Vegetation Feedbacks to Climate in the Global Monsoon Regions

Michael Notaro Center for Climatic Research, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Michael Notaro in
Current site
Google Scholar
PubMed
Close
,
Guangshan Chen Center for Climatic Research, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Guangshan Chen in
Current site
Google Scholar
PubMed
Close
, and
Zhengyu Liu Center for Climatic Research, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Zhengyu Liu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Vegetation feedbacks on climate, on the subannual time scale, are examined across six monsoon regions with a fully coupled atmosphere–ocean–ice–land model with dynamic vegetation. Initial value ensemble experiments are run in which the total vegetation cover fraction across the six monsoon regions is reduced and the climatic response assessed. Consistent responses among the regions include reductions in leaf area index, turbulent fluxes, and atmospheric moisture; enhanced subsidence; and increases in ground and surface air temperature. The most distinct changes in vertical motion, precipitable water, and precipitation occur along the flanks of the monsoon season, with small changes in midmonsoon rainfall. Unique responses to reduced vegetation cover are noted among the monsoon regions. While the monsoon is delayed and weaker over north Australia owing to diminished leaf area, it occurs earlier over China and the southwest United States. The subtropical monsoon regions are characterized by a larger decrease in sensible heat than latent heat flux, while the opposite is true for tropical monsoon regions. North Australia experiences the most substantial decline in both moisture flux convergence and precipitation.

Nelson Institute Center for Climatic Research Publication Number 1010.

Corresponding author address: Michael Notaro, Center for Climatic Research, University of Wisconsin—Madison, 1225 West Dayton Street, Madison, WI 53706. E-mail: mnotaro@wisc.edu

Abstract

Vegetation feedbacks on climate, on the subannual time scale, are examined across six monsoon regions with a fully coupled atmosphere–ocean–ice–land model with dynamic vegetation. Initial value ensemble experiments are run in which the total vegetation cover fraction across the six monsoon regions is reduced and the climatic response assessed. Consistent responses among the regions include reductions in leaf area index, turbulent fluxes, and atmospheric moisture; enhanced subsidence; and increases in ground and surface air temperature. The most distinct changes in vertical motion, precipitable water, and precipitation occur along the flanks of the monsoon season, with small changes in midmonsoon rainfall. Unique responses to reduced vegetation cover are noted among the monsoon regions. While the monsoon is delayed and weaker over north Australia owing to diminished leaf area, it occurs earlier over China and the southwest United States. The subtropical monsoon regions are characterized by a larger decrease in sensible heat than latent heat flux, while the opposite is true for tropical monsoon regions. North Australia experiences the most substantial decline in both moisture flux convergence and precipitation.

Nelson Institute Center for Climatic Research Publication Number 1010.

Corresponding author address: Michael Notaro, Center for Climatic Research, University of Wisconsin—Madison, 1225 West Dayton Street, Madison, WI 53706. E-mail: mnotaro@wisc.edu
Save
  • Betts, R. A., 2000: Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature, 408, 187190.

  • Bonan, G. B., 1997: Effects of land use on the climate of the United States. Climatic Change, 37, 449486.

  • Bonan, G. B., S. Levis, S. Sitch, M. Vertenstein, and K. W. Oleson, 2003: A dynamic global vegetation model for use with climate models: Concepts and description of simulated vegetation dynamics. Global Change Biol., 9, 15431566.

    • Search Google Scholar
    • Export Citation
  • Braconnot, P., S. Joussaume, O. Marti, and N. de Noblet, 1999: Synergistic feedbacks from ocean and vegetation on the African monsoon response to mid-Holocene insolation. Geophys. Res. Lett., 26, 24812484.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model Version 3 (CCSM3). J. Climate, 19, 21222143.

  • Cornelius, J. M., P. R. Kemp, J. A. Ludwig, and G. L. Cunningham, 1991: The distribution of vascular plant species and guilds in space and time along a desert gradient. J. Veg. Sci., 2, 5972.

    • Search Google Scholar
    • Export Citation
  • Costa, M. H. C., and J. A. Foley, 2000: Combined effects of deforestation and doubled atmospheric CO2 concentrations on the climate of Amazonia. J. Climate, 13, 1834.

    • Search Google Scholar
    • Export Citation
  • Delire, C., P. Behling, M. T. Coe, J. A. Foley, R. Jacob, J. Kutzbach, Z. Liu, and S. Vavrus, 2001: Simulated response of the atmosphere–ocean system to deforestation in the Indonesian Archipelago. Geophys. Res. Lett., 28, 20812084.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Capotondi, R. Saravanan, and A. S. Phillips, 2006: Tropical Pacific and Atlantic climate variability in CCSM3. J. Climate, 19, 24512481.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., and A. Henderson-Sellers, 1988: Modeling tropical deforestation: A study of GCM land surface parameterization. Quart. J. Roy. Meteor. Soc., 114, 439462.

    • Search Google Scholar
    • Export Citation
  • Durbidge, T. B., and A. Henderson-Sellers, 1993: Large-scale hydrological responses to tropical deforestation. Macroscale Modelling of the Hydrosphere, IAHS Publ. 214, 103–112.

    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., and R. L. Bras, 1993: On the response of the tropical atmosphere to large-scale deforestation. Quart. J. Roy. Meteor. Soc., 119, 779793.

    • Search Google Scholar
    • Export Citation
  • Foley, J. A., M. H. Costa, C. Delire, N. Ramankutty, and P. Snyder, 2003: Green surprise: How terrestrial ecosystems could affect Earth’s climate. Front. Ecol. Environ., 1, 3844.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., S. G. Yeager, R. B. Neale, S. Levis, and D. A. Bailey, 2010: Improvements in a half degree atmosphere/land version of the CCSM. Climate Dyn., 34, 819833, doi:10.1007/s00382-009-0614-8.

    • Search Google Scholar
    • Export Citation
  • Gibbard, S., K. Caldeira, G. Bala, T. J. Phillips, and M. Wickett, 2005: Climate effects of global land cover change. Geophys. Res. Lett., 32, L23705, doi:10.1029/2005GL024550.

    • Search Google Scholar
    • Export Citation
  • Govindasamy, B., P. B. Duffy, and K. Caldeira, 2001: Land use changes and northern hemisphere cooling. Geophys. Res. Lett., 28, 291294.

    • Search Google Scholar
    • Export Citation
  • Hack, J. J., 1994: Parameterization of moist convection in the National Center for Atmospheric Research community climate model (CCM2). J. Geophys. Res., 99, 55515568.

    • Search Google Scholar
    • Export Citation
  • Hack, J. J., J. M. Caron, S. G. Yeager, K. W. Oleson, M. M. Holland, J. E. Truesdale, and P. J. Rasch, 2006: Simulation of the global hydrological cycle in the CCSM Community Atmosphere Model Version 3 (CAM3): Mean features. J. Climate, 19, 21992221.

    • Search Google Scholar
    • Export Citation
  • Hahmann, A. N., and R. E. Dickinson, 1997: RCCM2–BATS model over tropical South America: Applications to tropical deforestation. J. Climate, 10, 19441964.

    • Search Google Scholar
    • Export Citation
  • Hales, K., J. D. Neelin, and N. Zeng, 2004: Sensitivity of tropical land climate to leaf area index: Role of surface conductance versus albedo. J. Climate, 17, 14591473.

    • Search Google Scholar
    • Export Citation
  • Hoffmann, W. A., and R. B. Jackson, 2000: Vegetation–climate feedbacks in the conversion of tropical savanna to grassland. J. Climate, 13, 15931602.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kirk-Davidoff, D., and D. Keith, 2008: On the climate impact of surface roughness anomalies. J. Atmos. Sci., 65, 22152234.

  • Kutzbach, J. E., G. Bonan, J. Foley, and S. P. Harrison, 1996: Vegetation and soil feedbacks on the response of the African monsoon to orbital forcing in the early to middle Holocene. Nature, 384, 623626.

    • Search Google Scholar
    • Export Citation
  • Laliberte, A. S., A. Rango, K. M. Havstad, J. F. Paris, R. F. Beck, R. McNeely, and A. L. Gonzalez, 2004: Object-oriented image analysis for mapping shrub encroachment from 1937 to 2003 in southern New Mexico. Remote Sens. Environ., 93, 198210.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., P. E. Thornton, K. W. Oleson, and G. B. Bonan, 2007: The partitioning of evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM: Impacts on land–atmosphere interaction. J. Hydrometeor., 8, 862880.

    • Search Google Scholar
    • Export Citation
  • Lawrence, P. J., and T. N. Chase, 2010: Investigating the climate impacts of global land cover change in the community climate system model. Int. J. Climatol., 30, 20662087.

    • Search Google Scholar
    • Export Citation
  • Lean, J., and P. R. Rowntree, 1993: A GCM simulation of the impact of Amazonian deforestation on climate using an improved canopy representation. Quart. J. Roy. Meteor. Soc., 119, 509530.

    • Search Google Scholar
    • Export Citation
  • Lean, J., and P. R. Rowntree, 1997: Understanding the sensitivity of a GCM simulation of Amazonian deforestation in the specification of vegetation and soil characteristics. J. Climate, 10, 12161235.

    • Search Google Scholar
    • Export Citation
  • Levis, S., G. B. Bonan, and C. Bonfils, 2004: Soil feedback drives the mid-Holocene North African monsoon northward in fully coupled CCSM2 simulations with a dynamic vegetation model. Climate Dyn., 23, 791802 , doi:10.1007/s00382-004-0477-y.

    • Search Google Scholar
    • Export Citation
  • Lin, S.-J., 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 22932307.

  • Liu, Z., M. Notaro, and R. Gallimore, 2010: Indirect vegetation–soil moisture feedback with application to Holocene North Africa climate. Global Change Biol., 16, 17331743.

    • Search Google Scholar
    • Export Citation
  • Mabuchi, K., Y. Sato, and H. Kida, 2005: Climatic impact of vegetation change in the Asian tropical region. Part I: Case of the Northern Hemisphere summer. J. Climate, 18, 410428.

    • Search Google Scholar
    • Export Citation
  • Matsui, T., V. Lakshmi, and E. E. Small, 2005: The effects of satellite-derived vegetation cover variability on simulated land–atmosphere interactions in the NAMS. J. Climate, 18, 2140.

    • Search Google Scholar
    • Export Citation
  • McPherson, R. A., 2007: A review of vegetation–atmosphere interactions and their influences on mesoscale phenomena. Prog. Phys. Geogr., 31, 261285.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, D. M. Lawrence, A. Seth, E. K. Schneider, B. P. Kirtman, and D. Min, 2006: Monsoon regimes in the CCSM3. J. Climate, 19, 24822495.

    • Search Google Scholar
    • Export Citation
  • Miller, G., J. Mangan, D. Pollard, S. Thompson, B. Felzer, and J. Magee, 2005: Sensitivity of the Australian monsoon to insolation and vegetation: Implications for human impact on continental moisture balance. Geology, 33, 6568.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., J. H. Richter, and M. Jochum, 2008: The impact of convection on ENSO: From a delayed oscillator to a series of events. J. Climate, 21, 59045924.

    • Search Google Scholar
    • Export Citation
  • Nosetto, M. D., E. G. Jobbágy, and J. M. Paruelo, 2005: Land-use change and water losses: The case of grassland afforestation across a soil textural gradient in central Argentina. Global Change Biol., 11, 11011117.

    • Search Google Scholar
    • Export Citation
  • Notaro, M., and Z. Liu, 2008: Joint statistical and dynamical assessment of simulated vegetation feedbacks on climate over the boreal forests. Climate Dyn., 31, 691712.

    • Search Google Scholar
    • Export Citation
  • Notaro, M., and D. Gutzler, 2011: Simulated impact of vegetation on climate across the North American monsoon region in CCSM3.5. Climate Dyn., doi:10.1007/s00382-010-0990-0, in press.

    • Search Google Scholar
    • Export Citation
  • Notaro, M., Y. Wang, Z. Liu, R. Gallimore, and S. Levis, 2008: Combined statistical and dynamical assessment of simulated vegetation–rainfall interactions in North Africa during the mid-Holocene. Global Change Biol., 14, 347368.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2008: Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophys. Res., 113, G01021, doi:10.1029/2007JG000563.

    • Search Google Scholar
    • Export Citation
  • Osborne, T. M., D. M. Lawrence, J. M. Slingo, A. J. Challinor, and T. R. Wheeler, 2004: Influence of vegetation on the local climate and hydrology in the tropics: Sensitivity to soil parameters. Climate Dyn., 23, 4561.

    • Search Google Scholar
    • Export Citation
  • Oyama, M. D., and C. A. Nobre, 2004: Climatic consequences of a large-scale desertification in northeast Brazil: A GCM simulation study. J. Climate, 17, 32033213.

    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., T. B. Durbidge, A. Henderson-Sellers, and K. McGuffie, 1993: Assessing climate model sensitivity to prescribed deforested landscapes. Int. J. Climatol., 13, 879898.

    • Search Google Scholar
    • Export Citation
  • Polcher, J., and K. Laval, 1994: A statistical study of regional impact of deforestation on climate of the LMD-GCM. Climate Dyn., 10, 205219.

    • Search Google Scholar
    • Export Citation
  • Ramankutty, N., and J. A. Foley, 1998: Characterizing patterns of global land use: An analysis of global croplands data. Global Biogeochem. Cycles, 12, 667686.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and A. M. Blythe, 1986: A stochastic model for nonprecipitating cumulus clouds. J. Atmos. Sci., 43, 27082718.

  • Reynolds, J. F., P. R. Kemp, and J. D. Tenhunen, 2000: Effects of long-term rainfall variability on evapotranspiration and soil water distribution in the Chihuahuan Desert: A modeling analysis. Plant Ecol., 150, 145159.

    • Search Google Scholar
    • Export Citation
  • Richter, J. H., and P. J. Rasch, 2008: Effects of convective momentum transport on the atmospheric circulation in the Community Atmosphere Model, Version 3. J. Climate, 21, 14871499.

    • Search Google Scholar
    • Export Citation
  • Sitch, S., and Coauthors, 2003: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biol., 9, 161185.

    • Search Google Scholar
    • Export Citation
  • Snyder, P. K., C. Delire, and J. A. Foley, 2004: Evaluating the influence of different vegetation biomes on the global climate. Climate Dyn., 23, 279302, doi:10.1007/s00382-004-0430-0.

    • Search Google Scholar
    • Export Citation
  • Stöckli, R., T. Rutishauser, D. Dragoni, J. O’Keefe, P. E. Thornton, M. Jolly, L. Lu, and A. S. Denning, 2008: Remote sensing data assimilation for a prognostic phenology model. J. Geophys. Res., 113, G04021, doi:10.1029/2008JG000781.

    • Search Google Scholar
    • Export Citation
  • Tweit, S. J., 1995: Barren, Wild, and Worthless: Living in the Chihuahuan Desert. University of New Mexico Press, 203 pp.

  • Wang, Y., M. Notaro, Z. Liu, R. Gallimore, S. Levis, and J. E. Kutzbach, 2007: Detecting vegetation-precipitation feedbacks in mid-Holocene North Africa from two climate models. Climate Past, 3, 961975.

    • Search Google Scholar
    • Export Citation
  • Watts, C., R. Scott, J. Garatuza-Payan, J. Rodriguez, J. Prueger, W. Kustas, and M. Douglas, 2007: Changes in vegetation condition and surface fluxes during NAME 2004. J. Climate, 20, 18101820.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1996: Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J. Climate, 9, 840858.

    • Search Google Scholar
    • Export Citation
  • Zeng, N., R. E. Dickinson, and X. Zeng, 1996: Climatic impact of Amazon deforestation—A mechanistic model study. J. Climate, 9, 859883.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33, 407446.

    • Search Google Scholar
    • Export Citation
  • Zheng, X. Y., and E. A. B. Eltahir, 1998: A soil moisture–rainfall feedback mechanism. 2. Numerical experiments. Water Resour. Res., 34, 777785.

    • Search Google Scholar
    • Export Citation
  • Zhou, L., R. E. Dickinson, Y. Tian, R. S. Vose, and Y. Dai, 2007: Impact of vegetation removal and soil aridation on diurnal temperature range in a semiarid region: Application to the Sahel. Proc. Natl. Acad. Sci. USA, 104, 17 93717 942.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 664 134 8
PDF Downloads 393 102 8