Impact of the Atlantic Meridional Overturning Circulation (AMOC) on Arctic Surface Air Temperature and Sea Ice Variability

Salil Mahajan Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey

Search for other papers by Salil Mahajan in
Current site
Google Scholar
PubMed
Close
,
Rong Zhang Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Rong Zhang in
Current site
Google Scholar
PubMed
Close
, and
Thomas L. Delworth Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Thomas L. Delworth in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The simulated impact of the Atlantic meridional overturning circulation (AMOC) on the low-frequency variability of the Arctic surface air temperature (SAT) and sea ice extent is studied with a 1000-year-long segment of a control simulation of the Geophysical Fluid Dynamics Laboratory Climate Model version 2.1. The simulated AMOC variations in the control simulation are found to be significantly anticorrelated with the Arctic sea ice extent anomalies and significantly correlated with the Arctic SAT anomalies on decadal time scales in the Atlantic sector of the Arctic. The maximum anticorrelation with the Arctic sea ice extent and the maximum correlation with the Arctic SAT occur when the AMOC index leads by one year. An intensification of the AMOC is associated with a sea ice decline in the Labrador, Greenland, and Barents Seas in the control simulation, with the largest change occurring in winter. The recent declining trend in the satellite-observed sea ice extent also shows a similar pattern in the Atlantic sector of the Arctic in the winter, suggesting the possibility of a role of the AMOC in the recent Arctic sea ice decline in addition to anthropogenic greenhouse-gas-induced warming. However, in the summer, the simulated sea ice response to the AMOC in the Pacific sector of the Arctic is much weaker than the observed declining trend, indicating a stronger role for other climate forcings or variability in the recently observed summer sea ice decline in the Chukchi, Beaufort, East Siberian, and Laptev Seas.

Corresponding author address: Salil Mahajan, 1 Bethel Valley Road, Oak Ridge National Laboratory, Oak Ridge, TN 37830. E-mail: mahajans@ornl.gov

Abstract

The simulated impact of the Atlantic meridional overturning circulation (AMOC) on the low-frequency variability of the Arctic surface air temperature (SAT) and sea ice extent is studied with a 1000-year-long segment of a control simulation of the Geophysical Fluid Dynamics Laboratory Climate Model version 2.1. The simulated AMOC variations in the control simulation are found to be significantly anticorrelated with the Arctic sea ice extent anomalies and significantly correlated with the Arctic SAT anomalies on decadal time scales in the Atlantic sector of the Arctic. The maximum anticorrelation with the Arctic sea ice extent and the maximum correlation with the Arctic SAT occur when the AMOC index leads by one year. An intensification of the AMOC is associated with a sea ice decline in the Labrador, Greenland, and Barents Seas in the control simulation, with the largest change occurring in winter. The recent declining trend in the satellite-observed sea ice extent also shows a similar pattern in the Atlantic sector of the Arctic in the winter, suggesting the possibility of a role of the AMOC in the recent Arctic sea ice decline in addition to anthropogenic greenhouse-gas-induced warming. However, in the summer, the simulated sea ice response to the AMOC in the Pacific sector of the Arctic is much weaker than the observed declining trend, indicating a stronger role for other climate forcings or variability in the recently observed summer sea ice decline in the Chukchi, Beaufort, East Siberian, and Laptev Seas.

Corresponding author address: Salil Mahajan, 1 Bethel Valley Road, Oak Ridge National Laboratory, Oak Ridge, TN 37830. E-mail: mahajans@ornl.gov
Save
  • Bengtsson, L., V. A. Semenov, and O. M. Johannessen, 2004: The early twentieth-century warming in the Arctic—A possible mechanism. J. Climate, 17, 4045–4057.

    • Search Google Scholar
    • Export Citation
  • Cavalieri, D., C. Parkinson, P. Gloersen, and H. J. Zwally, 1996, updated 2008: Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I Passive Microwave Data, [1979-2008]. National Snow and Ice Data Center, Boulder, CO, digital media.

  • Chylek, P., C. K. Folland, G. Lesins, M. K. Dubey, and M. Wang, 2009: Arctic air temperature change amplification and the Atlantic multidecadal oscillation. Geophys. Res. Lett., 36, L14801, doi:10.1029/2009GL038777.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., C. L. Parkinson, R. Gersten, and L. Stock, 2008: Accelerated decline in the arctic sea ice cover. Geophys. Res. Lett., 35, L01703, doi:10.1029/2007GL031972.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and M. E. Mann, 2000: Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dyn., 16, 661–676.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643–674.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and H. Teng, 2008: Recent trends in Arctic sea ice and the evolving role of atmospheric circulation forcing. Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications, Geophys. Monogr., Vol. 180, Amer. Geohys. Union, 7–26.

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., T. N. Palmer, and D. E. Parker, 1986: Sahel rainfall and worldwide sea temperatures, 1901–85. Nature, 320, 602–607.

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., A. W. Colman, D. P. Rowell, and M. K. Davey, 2001: Predictability of northeast Brazil rainfall and real-time forecast skill, 1987–98. J. Climate, 14, 1937–1958.

    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., D. A. Stone, P. A. Stott, T. Nozawa, A. Y. Karpechko, G. C. Hegerl, M. F. Wehner, and P. D. Jones, 2008: Attribution of polar warming to human influence. Nat. Geosci., 1, 750–754.

    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., C. W. Landsea, A. M. Mestas-Nunez, and W. M. Gray, 2001: The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293, 474–479.

    • Search Google Scholar
    • Export Citation
  • Hall, A., 2004: The role of surface albedo feedback in climate. J. Climate, 17, 1550–1568.

  • Holland, M. M., and C. M. Bitz, 2003: Polar amplification of climate change in coupled models. Climate Dyn., 21, 221–232.

  • Holland, M. M., M. Serreze, and J. Stroeve, 2010: The sea ice mass budget of the Arctic and its future change as simulated by coupled climate models. Climate Dyn., 34, 185–200.

    • Search Google Scholar
    • Export Citation
  • Johannessen, O., and Coauthors, 2004: Arctic climate change: Observed and modeled temperature and sea-ice variability. Tellus, 56A, 559–560.

    • Search Google Scholar
    • Export Citation
  • Knight, J. R., R. J. Allan, C. K. Folland, M. Vellinga, and M. E. Mann, 2005: A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32, L20708, doi:10.1029/2005GL024233.

    • Search Google Scholar
    • Export Citation
  • Kuzmina, S. I., O. M. Johannessen, L. Bengtsson, O. G. Aniskina, and L. Bobylev, 2008: High northern latitude surface air temperature: Comparison of existing data and creation of a new gridded data set 1900–2000. Tellus, 60A, 289–304.

    • Search Google Scholar
    • Export Citation
  • Kwok, R., and D. A. Rothrock, 2009: Decline in arctic sea ice thickness from submarine and Icesat records: 1958–2008. Geophys. Res. Lett., 36, L15501, doi:10.1029/2009GL039035.

    • Search Google Scholar
    • Export Citation
  • Kwok, R., G. F. Cunningham, M. Wensnahan, I. Rigor, H. J. Zwally, and D. Yi, 2009: Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008. J. Geophys. Res., 114, C07005, doi:10.1029/2009JC005312.

    • Search Google Scholar
    • Export Citation
  • Lindsay, R. W., and J. Zhang, 2005: The thinning of arctic sea ice, 1988–2003: Have we passed a tipping point? J. Climate, 18, 4879–4894.

    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., and W. Y. Chen, 1983: Statistical field significance and its determination by Monte Carlo techniques. Mon. Wea. Rev., 111, 46–59.

    • Search Google Scholar
    • Export Citation
  • Mahajan, S., R. Zhang, T. L. Delworth, S. Zhang, A. J. Rosati, and Y.-S. Chang, 2011: Predicting Atlantic meridional overturning circulation (AMOC) variations using subsurface and surface fingerprints. Deep-Sea Res. II, 58, 1895–1903.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. J. Stouffer, 1980: Sensitivity of a global climate model to an increase of CO2 concentration in the atmosphere. J. Geophys. Res., 85, 5529–5554.

    • Search Google Scholar
    • Export Citation
  • Moritz, R. E., C. M. Bitz, and E. J. Steig, 2002: Dynamics of recent climate change in the arctic. Science, 297, 1497–1502.

  • Msadek, R., K. W. Dixon, T. L. Delworth, and W. Hurlin, 2010: Assessing the predictability of the Atlantic meridional overturning circulation and associated fingerprints. Geophys. Res. Lett., 37, L19608, doi:10.1029/2010GL044517.

    • Search Google Scholar
    • Export Citation
  • Polyakov, I. V., and Coauthors, 2003: Long-term ice variability in Arctic marginal seas. J. Climate, 16, 2078–2085.

  • Polyakov, I. V., V. Alexeev, U. Bhatt, E. Polyakova, and X. Zhang, 2010: North Atlantic warming: Patterns of long-term trend and multidecadal variability. Climate Dyn., 34, 439–457.

    • Search Google Scholar
    • Export Citation
  • Rothrock, D. A., and J. Zhang, 2005: Arctic ocean sea ice volume: What explains its recent depletion? J. Geophys. Res., 110, C01002, doi:10.1029/2004JC002282.

    • Search Google Scholar
    • Export Citation
  • Rothrock, D. A., D. B. Percival, and M. Wensnahan, 2008: The decline in Arctic sea ice thickness: Separating the spatial, annual, and interannual variability in a quarter century of submarine data. J. Geophys. Res., 113, C05003, doi:10.1029/2007JC004252.

    • Search Google Scholar
    • Export Citation
  • Shimada, K., T. Kamoshida, M. Itoh, S. Nishino, E. Carmack, F. McLaughlin, S. Zimmermann, and A. Proshutinsky, 2006: Pacific Ocean inflow: Influence on catastrophic reduction of sea ice cover in the Arctic Ocean. Geophys. Res. Lett., 33, L08605, doi:10.1029/2005GL025624.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J., M. M. Holland, W. Meier, T. Scambos, and M. Serreze, 2007: Arctic sea ice decline: Faster than forecast. Geophys. Res. Lett., 34, L09501, doi:10.1029/2007GL029703.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and D. L. R. Hodson, 2005: Atlantic Ocean forcing of North American and European summer climate. Science, 309, 115–118.

    • Search Google Scholar
    • Export Citation
  • Zakharov, V. F., 1997: Sea ice in the climate system. World Climate Research Programme/Arctic Climate System Study Rep. WMO/TD 782, 80 pp.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., 2008: Coherent surface-subsurface fingerprint of the Atlantic meridional overturning circulation. Geophys. Res. Lett., 35, L20705, doi:10.1029/2008GL035463.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2006: Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett., 33, L23708, doi:10.1029/2006GL026267.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., T. L. Delworth, and I. M. Held, 2007: Can the Atlantic Ocean drive the observed multidecadal variability in Northern Hemisphere mean temperature? Geophys. Res. Lett., 34, L02709, doi:10.1029/2006GL028683.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., and J. E. Walsh, 2006: Toward a seasonally ice-covered Arctic Ocean: Scenarios from the IPCC AR4 model simulations. J. Climate, 19, 1730–1747.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3307 631 40
PDF Downloads 1910 404 24