Detection of Atmospheric Changes in Spatially and Temporally Averaged Infrared Spectra Observed from Space

Seiji Kato * Climate Science Branch, NASA Langley Research Center, Hampton, Virginia

Search for other papers by Seiji Kato in
Current site
Google Scholar
PubMed
Close
,
Bruce A. Wielicki * Climate Science Branch, NASA Langley Research Center, Hampton, Virginia

Search for other papers by Bruce A. Wielicki in
Current site
Google Scholar
PubMed
Close
,
Fred G. Rose Science System & Applications Inc., Hampton, Virginia

Search for other papers by Fred G. Rose in
Current site
Google Scholar
PubMed
Close
,
Xu Liu * Climate Science Branch, NASA Langley Research Center, Hampton, Virginia

Search for other papers by Xu Liu in
Current site
Google Scholar
PubMed
Close
,
Patrick C. Taylor * Climate Science Branch, NASA Langley Research Center, Hampton, Virginia

Search for other papers by Patrick C. Taylor in
Current site
Google Scholar
PubMed
Close
,
David P. Kratz * Climate Science Branch, NASA Langley Research Center, Hampton, Virginia

Search for other papers by David P. Kratz in
Current site
Google Scholar
PubMed
Close
,
Martin G. Mlynczak * Climate Science Branch, NASA Langley Research Center, Hampton, Virginia

Search for other papers by Martin G. Mlynczak in
Current site
Google Scholar
PubMed
Close
,
David F. Young * Climate Science Branch, NASA Langley Research Center, Hampton, Virginia

Search for other papers by David F. Young in
Current site
Google Scholar
PubMed
Close
,
Nipa Phojanamongkolkij Aeronautics System Engineering Branch, NASA Langley Research Center, Hampton, Virginia

Search for other papers by Nipa Phojanamongkolkij in
Current site
Google Scholar
PubMed
Close
,
Sunny Sun-Mack Science System & Applications Inc., Hampton, Virginia

Search for other papers by Sunny Sun-Mack in
Current site
Google Scholar
PubMed
Close
,
Walter F. Miller Science System & Applications Inc., Hampton, Virginia

Search for other papers by Walter F. Miller in
Current site
Google Scholar
PubMed
Close
, and
Yan Chen Science System & Applications Inc., Hampton, Virginia

Search for other papers by Yan Chen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Variability present at a satellite instrument sampling scale (small-scale variability) has been neglected in earlier simulations of atmospheric and cloud property change retrievals using spatially and temporally averaged spectral radiances. The effects of small-scale variability in the atmospheric change detection process are evaluated in this study. To simulate realistic atmospheric variability, top-of-the-atmosphere nadir-view longwave spectral radiances are computed at a high temporal (instantaneous) resolution with a 20-km field-of-view using cloud properties retrieved from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements, along with temperature humidity profiles obtained from reanalysis. Specifically, the effects of the variability on the necessary conditions for retrieving atmospheric changes by a linear regression are tested. The percentage error in the annual 10° zonal mean spectral radiance difference obtained by assuming linear combinations of individual perturbations expressed as a root-mean-square (RMS) difference computed over wavenumbers between 200 and 2000 cm−1 is 10%–15% for most of the 10° zones. However, if cloud fraction perturbation is excluded, the RMS difference decreases to less than 2%. Monthly and annual 10° zonal mean spectral radiances change linearly with atmospheric property perturbations, which occur when atmospheric properties are perturbed by an amount approximately equal to the variability of the10° zonal monthly deseasonalized anomalies or by a climate-model-predicted decadal change. Nonlinear changes in the spectral radiances of magnitudes similar to those obtained through linear estimation can arise when cloud heights and droplet radii in water cloud change. The spectral shapes computed by perturbing different atmospheric and cloud properties are different so that linear regression can separate individual spectral radiance changes from the sum of the spectral radiance change. When the effects of small-scale variability are treated as noise, however, the error in retrieved cloud properties is large. The results suggest the importance of considering small-scale variability in inferring atmospheric and cloud property changes from the satellite-observed zonally and annually averaged spectral radiance difference.

Corresponding author address: Seiji Kato, NASA Langley Research Center, Mail Stop 420, Hampton, VA 23681-2199. E-mail: seiji.kato@nasa.gov

Abstract

Variability present at a satellite instrument sampling scale (small-scale variability) has been neglected in earlier simulations of atmospheric and cloud property change retrievals using spatially and temporally averaged spectral radiances. The effects of small-scale variability in the atmospheric change detection process are evaluated in this study. To simulate realistic atmospheric variability, top-of-the-atmosphere nadir-view longwave spectral radiances are computed at a high temporal (instantaneous) resolution with a 20-km field-of-view using cloud properties retrieved from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements, along with temperature humidity profiles obtained from reanalysis. Specifically, the effects of the variability on the necessary conditions for retrieving atmospheric changes by a linear regression are tested. The percentage error in the annual 10° zonal mean spectral radiance difference obtained by assuming linear combinations of individual perturbations expressed as a root-mean-square (RMS) difference computed over wavenumbers between 200 and 2000 cm−1 is 10%–15% for most of the 10° zones. However, if cloud fraction perturbation is excluded, the RMS difference decreases to less than 2%. Monthly and annual 10° zonal mean spectral radiances change linearly with atmospheric property perturbations, which occur when atmospheric properties are perturbed by an amount approximately equal to the variability of the10° zonal monthly deseasonalized anomalies or by a climate-model-predicted decadal change. Nonlinear changes in the spectral radiances of magnitudes similar to those obtained through linear estimation can arise when cloud heights and droplet radii in water cloud change. The spectral shapes computed by perturbing different atmospheric and cloud properties are different so that linear regression can separate individual spectral radiance changes from the sum of the spectral radiance change. When the effects of small-scale variability are treated as noise, however, the error in retrieved cloud properties is large. The results suggest the importance of considering small-scale variability in inferring atmospheric and cloud property changes from the satellite-observed zonally and annually averaged spectral radiance difference.

Corresponding author address: Seiji Kato, NASA Langley Research Center, Mail Stop 420, Hampton, VA 23681-2199. E-mail: seiji.kato@nasa.gov
Save
  • Ackerman, S. A., K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley, 1998: Discriminating clear sky from clouds with MODIS. J. Geophys. Res., 103, 32 14132 157.

    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and S. F. B. Tett, 1999: Checking for model consistency in optimal fingerprinting. Climate Dyn., 15, 419434.

  • Baum, B. A., P. Yang, S. L. Nasiri, A. K. Heidinger, A. Heymsfield, and J. Li, 2007: Bulk scattering properties for the remote sensing of ice clouds. Part III: High-resolution spectral models from 100 to 3250 cm−1. J. Appl. Meteor. Climatol., 46, 423434.

    • Search Google Scholar
    • Export Citation
  • Bhartia, P. K., R. D. McPeters, C. L. Mateer, L. E. Flynn, and C. Wellemeyer, 1996: Algorithm for the estimation of vertical ozone profiles from the backscattered ultraviolet technique. J. Geophys. Res., 101 (D13), 18 79318 806.

    • Search Google Scholar
    • Export Citation
  • Bloom, S. A., and Coauthors, 2005: Documentation and validation of the Goddard Earth Observing System (GEOS) data assimilation system version-4. NASA Tech. Rep. Series on Global Modeling and Data Assimilation, Vol. 104606, 26 pp.

    • Search Google Scholar
    • Export Citation
  • Bony, S., J. L. Dufresne, H. Le Treut, J. J. Morcrette, and C. Senior, 2004: On dynamical and thermodynamic components of cloud changes. Climate Dyn., 22, 7186, doi:10.1007/s00382-003-0369-6.

    • Search Google Scholar
    • Export Citation
  • Cahalan, R. T., W. Ridgway, W. J. Wiscombe, S. Gollmer, and Harshverdhan, 1994: Independent pixel and Monte Carlo estimate of stratocumulus albedo. J. Atmos. Sci., 51, 37763790.

    • Search Google Scholar
    • Export Citation
  • Chahine, M. T., 1968: Determination of the temperature profile in an atmosphere from its outgoing radiance. J. Opt. Soc. Amer., 58, 1634.

    • Search Google Scholar
    • Export Citation
  • Chahine, M. T., 1977: Remote sensing of cloudy atmospheres. II. Multiple cloud formations. J. Atmos. Sci., 34, 744.

  • Chahine, M. T., and Coauthors, 2006: AIRS: Improving weather forecasting and providing new data on greenhouse gases. Bull. Amer. Meteor. Soc., 87, 911926.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model version 3 (CCSM3). J. Climate, 19, 21222143.

  • Cooper, S. T., S. L’Ecuyer, P. Gabriel, A. J. Baran, and G. L. Stephens, 2006: Objective assessment of the information content of visible and infrared radiance measurements for cloud microphysical property retrievals over the global oceans. Part II: Ice clouds. J. Appl. Meteor. Climatol., 45, 4262.

    • Search Google Scholar
    • Export Citation
  • Fetzer, E. J., and Coauthors, 2003: AIRS/AMSU/HSB validation. IEEE Trans. Geosci. Remote Sens., 41, 418431.

  • Fetzer, E. J., J. Teixeira, E. Olsen, and E. F. Fishbein, 2004: Satellite remote sounding of atmospheric boundary layer temperature inversions over the subtropical eastern Pacific. Geophys. Res. Lett., 31, L14201, doi:10.1029/2004GL020174.

    • Search Google Scholar
    • Export Citation
  • Frey, R. A., S. A. Ackermen, Y. Liu, K. I. Strabala, H. Zhang, J. R. Key, and X. Wang, 2008: Cloud detection with MODIS. Part I: Improvements in the MODIS cloud mask for collection 5. J. Atmos. Oceanic Technol., 25, 10571072.

    • Search Google Scholar
    • Export Citation
  • Goody, R. M., and Y. L. Yung, 1989: Atmospheric Radiation, Theoretical Bases. Oxford University Press, 591 pp.

  • Huang, H.-L., and Coauthors, 2004: Inference of ice cloud properties from high-spectral resolution infrared observations. IEEE Trans. Geosci. Remote Sens., 42, 842852.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., S. Leroy, P. J. Gero, J. Dykema, and J. Anderson, 2010: Separation of longwave climate feedbacks from spectral observations. J. Geophys. Res., 115, D07104, doi:10.1029/2009JD012766.

    • Search Google Scholar
    • Export Citation
  • Kahn, B. H., E. Fishbein, S. L. Nasiri, A. Eldering, E. J. Fetzer, M. J. Garay, and S. Y. Lee, 2007: The radiative consistency of Atmospheric Infrared Sounder and Moderate Resolution Imaging Spectroradiometer cloud retrievals. J. Geophys. Res., 112, D09201, doi:10.1029/2006JD007486.

    • Search Google Scholar
    • Export Citation
  • Kato, S., and A. Marshak, 2009: Solar zenith and viewing geometry-dependent errors in satellite retrieved cloud optical thickness: Marine stratocumulus case. J. Geophys. Res., 114, D01202, doi:10.1029/2008JD010579.

    • Search Google Scholar
    • Export Citation
  • Kato, S., L. M. Hinkelman, and A. Cheng, 2006: Estimate of satellite-derived cloud optical thickness and effective radius errors and their effect on computed domain-averaged irradiances. J. Geophys. Res., 111, D17201, doi:10.1029/2005JD006668.

    • Search Google Scholar
    • Export Citation
  • Leroy, S., J. Anderson, J. Dykema, and R. Goody, 2008: Testing climate models using thermal infrared spectra. J. Climate, 21, 18631875.

    • Search Google Scholar
    • Export Citation
  • Liu, X., W. L. Smith, D. K. Zhou, and A. Larar, 2006: Principal component-based radiative transfer model for hyperspectral sensors: Theoretical concept. Appl. Opt., 45, 201209.

    • Search Google Scholar
    • Export Citation
  • Liu, X., D. K. Zhou, A. Larar, W. L. Smith, and S. A. Mangoc, 2007: Case study of a principal-component-based radiative transfer forward model and retrieval algorithm using EAQUATE data. Quart. J. Roy. Meteor. Soc., 133, 243256.

    • Search Google Scholar
    • Export Citation
  • Liu, X., D. K. Zhou, A. Larar, W. L. Smith, P. Schluessel, S. M. Newman, J. P. Taylor, and W. Wu, 2009: Retrieval of atmospheric profiles and cloud properties from IASI spectra using super-channels. Atmos. Chem. Phys., 9, 122.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., and J. A. Coakley Jr., 1998: Influence of marine stratus cloud optical depth from satellite measurements: Does 1D theory apply? J. Climate, 11, 215233.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., and Coauthors, 2008: MODIS global cloud-top pressure and amount estimation: Algorithm description and results. J. Appl. Meteor. Climatol., 47, 11751198.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., D. P. Garber, D. F. Young, R. F. Arduni, and Y. Takano, 1998: Parameterization of reflectance and effective emittance for satellite remote sensing of cloud properties. J. Atmos. Sci., 55, 33133339.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., J. Huang, B. Lin, Y. Yi, R. F. Arduini, T. F. Fan, J. K. Ayers, and G. G. Mace, 2007: Ice cloud properties in ice-over-water cloud systems using TRMM VIRS and TMI data. J. Geophys. Res., 112, D06206, doi:10.1029/2006JD007626.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., and M. D. King, 1990: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory. J. Atmos. Sci., 47, 18781893.

    • Search Google Scholar
    • Export Citation
  • Neuendorffer, A. C., 1996: Ozone monitoring with TIROS-N operation vertical sounders. J. Geophys. Res., 101 (D13), 18 80718 828.

  • Niu, J. G., Y. Ping, H. L. Huang, J. E. Davies, J. Li, B. A. Baumc, and Y. X. Hu, 2007: A fast infrared radiative transfer model for overlapping clouds. J. Quant. Spectrosc. Radiat. Transfer, 103, 447459.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., and C. P. Weaver, 2001: Improved techniques for evaluating GCM cloudiness applied to the NCAR CCM3. J. Climate, 14, 25402550.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., J. Y. Li, M. D. King, H. Gerber, and P. V. Hobbs, 2001: A solar reflectance method for retrieving the optical thickness and droplet size of liquid water clouds over snow and ice surface. J. Geophys. Res., 106, 15 18515 199.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72, 220.

  • Segelstein, D. J., 1981: The complex refractive index of water. M.S. thesis, Dept. of Physics, University of Missouri-Kansas City, 167 pp.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., P. M. Gabriel, and S. C. Tsay, 1991: Statistical radiative transport in one-dimensional media and its application to the terrestrial atmosphere. Transp. Theory Stat. Phys., 20, 139175.

    • Search Google Scholar
    • Export Citation
  • Susskind, J., C. Barnet, and J. Blaisdell, 2003: Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE Trans. Geosci. Remote Sens., 41, 390409.

    • Search Google Scholar
    • Export Citation
  • Susskind, J., C. Barnet, J. Blaisdell, L. Iredell, F. Keita, L. Kouvaris, G. Molnar, and M. Chahine, 2006: Accuracy of geophysical parameters derived from Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit as a function of fractional cloud cover. J. Geophys. Res., 111, D00S17, doi:10.1029/2005JD006272.

    • Search Google Scholar
    • Export Citation
  • Tobin, C. D., and Coauthors, 2006: Atmospheric radiation measurement site atmospheric state best estimate for Atmospheric Infrared Sounder temperature and water vapor retrieval validation. J. Geophys. Res., 111, D00S17, doi:10.1029/2005JD006103.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1977: Introduction to the Mathematic of Inversion in Remote Sensing and Indirect Measurements. Elsevier Scientific, 242 pp.

  • Wark, D. O., and H. E. Fleming, 1966: Indirect measurements of atmospheric temperature profiles from satellites: Introduction. Mon. Wea. Rev., 94, 351362.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., 1984: Optical constants of ice from the ultraviolet to the microwave. Appl. Opt., 23, 12061225.

  • Wei, H., and Coauthors, 2007: Retrieval of semitransparent ice cloud optical thickness from Atmospheric Infrared Sounder (AIRS) measurements. IEEE Trans. Geosci. Remote Sens., 42, 22542267.

    • Search Google Scholar
    • Export Citation
  • Yang, P., B. C. Gao, B. A. Baum, Y. Hu, W. J. Wiscombe, S. C. Tsay, D. M. Winker, and S. L. Nasiri, 2001: Radiative properties of cirrus clouds in the infrared (8–13 μm) spectral region. J. Quant. Spectrosc. Radiat. Transfer, 70, 473504.

    • Search Google Scholar
    • Export Citation
  • Yang, S. K., S. Zhou, and A. J. Miller, cited 2011: SMOBA: A 3-D daily ozone analysis using SBUV/2 and TOVS measurements. [Available online at http://www.cpc.ncep.noaa.gov/products/stratosphere/SMOBA/smoba_doc.shtml.]

    • Search Google Scholar
    • Export Citation
  • Zhou, D. K., W. L. Smith Sr., X. Liu, A. M. Larar, S. A. Mango, and H. L. Huang, 2007: Physically retrieving cloud and thermodynamic parameters from ultraspectral IR measurements. J. Atmos. Sci., 64, 969981.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., and K. F. Evans, 1998: On the validity of the independent pixel approximation for boundary layer clouds observed during ASTEX. J. Geophys. Res., 103, 60596074.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 392 133 15
PDF Downloads 132 35 3