On Changing El Niño: A View from Time-Varying Annual Cycle, Interannual Variability, and Mean State

Cheng Qian Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, and State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China

Search for other papers by Cheng Qian in
Current site
Google Scholar
PubMed
Close
,
Zhaohua Wu Department of Earth, Ocean and Atmospheric Science, and Center for Ocean-Atmospheric Prediction Studies, The Florida State University, Tallahassee, Florida

Search for other papers by Zhaohua Wu in
Current site
Google Scholar
PubMed
Close
,
Congbin Fu Institute for Climate and Global Change Research, School of Atmospheric Sciences, Nanjing University, Nanjing, and Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Congbin Fu in
Current site
Google Scholar
PubMed
Close
, and
Dongxiao Wang State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China

Search for other papers by Dongxiao Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study investigates changes in the frequency of ENSO, especially the prolonged 1990–95 El Niño event, in the context of secular changes in the annual cycle, ENSO interannual variability, and background mean state of the tropical eastern Pacific sea surface temperature (SST). The ensemble empirical mode decomposition (EEMD) method is applied to isolate those components from the Niño-3 SST index for the period 1880–2008. It is shown that the annual cycle [referred to as a refined modulated annual cycle (MAC)] has strong interannual modulation and secular change in both amplitude and phase: a clear transition from increasing to decreasing amplitude around 1947/48, with both linear trends before and after this turning point statistically significant and the amplitude decreasing by 14% since then, and a significant phase delay trend for the period 1881–1938, but hardly any thereafter. A clear transition from significant deceasing to increasing by about 30% in the amplitude of the ENSO interannual variability around 1937 is also found. When El Niño events are represented as the collective interannual variability, their frequency is found to be almost equivalent to that of La Niña events after 1976. A method for conducting synthetic experiments based on time series analysis further reveals that the apparent prolonged 1990–95 El Niño event was not caused solely by ENSO interannual variability. Rather, the 1991/92 warm period is attributable to an interannual variation superimposed by change in the background mean state; the 1993 warm period is attributable to change in the mean state; and the 1994/95 warm period is attributable to a residual annual cycle, which cannot be fully excluded by a 30-yr mean annual cycle approach. The impact that changing base periods has on the classification of ENSO events and possible solutions is also discussed.

Corresponding author address: Zhaohua Wu, The Florida State University, 2035 E. Paul Dirac Dr., 200 RM Johnson Bldg., Tallahassee, FL 32306-2840. E-mail: zwu@fsu.edu

Abstract

This study investigates changes in the frequency of ENSO, especially the prolonged 1990–95 El Niño event, in the context of secular changes in the annual cycle, ENSO interannual variability, and background mean state of the tropical eastern Pacific sea surface temperature (SST). The ensemble empirical mode decomposition (EEMD) method is applied to isolate those components from the Niño-3 SST index for the period 1880–2008. It is shown that the annual cycle [referred to as a refined modulated annual cycle (MAC)] has strong interannual modulation and secular change in both amplitude and phase: a clear transition from increasing to decreasing amplitude around 1947/48, with both linear trends before and after this turning point statistically significant and the amplitude decreasing by 14% since then, and a significant phase delay trend for the period 1881–1938, but hardly any thereafter. A clear transition from significant deceasing to increasing by about 30% in the amplitude of the ENSO interannual variability around 1937 is also found. When El Niño events are represented as the collective interannual variability, their frequency is found to be almost equivalent to that of La Niña events after 1976. A method for conducting synthetic experiments based on time series analysis further reveals that the apparent prolonged 1990–95 El Niño event was not caused solely by ENSO interannual variability. Rather, the 1991/92 warm period is attributable to an interannual variation superimposed by change in the background mean state; the 1993 warm period is attributable to change in the mean state; and the 1994/95 warm period is attributable to a residual annual cycle, which cannot be fully excluded by a 30-yr mean annual cycle approach. The impact that changing base periods has on the classification of ENSO events and possible solutions is also discussed.

Corresponding author address: Zhaohua Wu, The Florida State University, 2035 E. Paul Dirac Dr., 200 RM Johnson Bldg., Tallahassee, FL 32306-2840. E-mail: zwu@fsu.edu
Save
  • An, S.-I., 2008: Interannual variations of the tropical ocean instability wave and ENSO. J. Climate, 21, 36803686.

  • An, S.-I., and F.-F. Jin, 2004: Nonlinearity and asymmetry of ENSO. J. Climate, 17, 23992412.

  • An, S.-I., and J. Choi, 2009: Seasonal locking of the ENSO asymmetry and its influence on the seasonal cycle of the tropical eastern Pacific sea surface temperature. Atmos. Res., 94, 39.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., and T. Yamagata, 2009: The El Niño with a difference. Nature, 461, 481484.

  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi:10.1029/2006JC003798.

    • Search Google Scholar
    • Export Citation
  • Breaker, L. C., and A. Ruzmaikin, 2010: The 154-year record of sea level at San Francisco: Extracting the long-term trend, recent changes, and other tidbits. Climate Dyn., 36, 545559, doi:10.1007/s00382-010-0865-4.

    • Search Google Scholar
    • Export Citation
  • Cobb, K. M., C. D. Charles, H. Cheng, and R. L. Edwards, 2003: El Niño/Southern Oscillation and tropical Pacific climate during the last millennium. Science, 424, 271276.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2010: The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci., 3, 391397.

  • Dijkstra, H. A., 2006: The ENSO phenomenon: Theory and mechanisms. Adv. Geosci., 6, 315.

  • Fedorov, A. V., and S. G. Philander, 2000: Is El Niño changing? Science, 288, 19972002.

  • Fedorov, A. V., and S. G. Philander, 2001: A stability analysis of tropical ocean–atmosphere interactions: Bridging measurements and theory for El Niño. J. Climate, 14, 30863101.

    • Search Google Scholar
    • Export Citation
  • Franzke, C., 2009: Multi-scale analysis of teleconnection indices: Climate noise and nonlinear trends. Nonlinear Processes Geophys., 16, 6576.

    • Search Google Scholar
    • Export Citation
  • Franzke, C., 2010: Long-range dependence and climate noise characteristics of Antarctic temperature data. J. Climate, 23, 60746081.

  • Franzke, C., and T. Woollings, 2011: On the persistence and predictability properties of North Atlantic climate variability. J. Climate, 24, 466472.

    • Search Google Scholar
    • Export Citation
  • Fu, C., H. Diaz, and J. Fletcher, 1986: Characteristics of the response of sea surface temperature in the central Pacific associated with warm episodes of the Southern Oscillation. Mon. Wea. Rev., 114, 17161739.

    • Search Google Scholar
    • Export Citation
  • Gu, D., and S. G. H. Philander, 1995: Secular change of annual and interannual variability in the tropics during the past century. J. Climate, 8, 864876.

    • Search Google Scholar
    • Export Citation
  • Gu, D., and S. G. H. Philander, 1997: Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science, 275, 805807.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., 2006: El Niño–mean state–seasonal cycle interactions in a multi-model ensemble. Climate Dyn., 26, 329348.

  • Harrison, D. E., and N. K. Larkin, 1997: Darwin sea level pressure, 1876–1996: Evidence for climate change? Geophys. Res. Lett., 24, 17791782.

    • Search Google Scholar
    • Export Citation
  • Hasegawa, T., and K. Hanawa, 2006: Impact of quasi-decadal variability in the tropical Pacific on ENSO modulations. J. Oceanogr., 62, 227234.

    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., L. Bengtsson, E. Roeckner, M. Christoph, A. Bacher, and J. M. Oberhuber, 2001: Impact of global warming on the interannual and interdecadal climate modes in a coupled GCM. Climate Dyn., 17, 361374.

    • Search Google Scholar
    • Export Citation
  • Huang, N. E., and Z. Wu, 2008: A review on Hilbert-Huang transform: Method and its applications to geophysical studies. Rev. Geophys., 46, RG2006, doi:10.1029/2007RG000228.

    • Search Google Scholar
    • Export Citation
  • Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, E. H. Shih, Q. Zheng, C. C. Tung, and H. H. Liu, 1998: The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proc. Roy. Soc. London, 454A, 903995.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., J. D. Neelin, and M. Ghil, 1996: El Niño/Southern Oscillation and the annual cycle: Subharmonic frequency-locking and aperiodicity. Physica D, 98, 442465.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., S.-I. An, A. Timmermann, and J. Zhao, 2003: Strong El Niño events and nonlinear dynamical heating. Geophys. Res. Lett., 30, 1120, doi:10.1029/2002GL016356.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632.

  • Kendall, M. G., 1955: Rank Correlation Methods. 2nd ed. Charles Griffin and Company, 196 pp.

  • Kim, K.-Y., and C. Chung, 2001: On the evolution of the annual cycle in the tropical Pacific. J. Climate, 14, 991994.

  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247267.

    • Search Google Scholar
    • Export Citation
  • Koeberle, C., and S. G. H. Philander, 1994: On the processes that control seasonal variations of sea surface temperatures in the tropical Pacific Ocean. Tellus, 46A, 481496.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515.

    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., and D. E. Harrison, 2005: On the definition of El Niño and associated seasonal average U.S. weather anomalies. Geophys. Res. Lett., 32, L13705, doi:10.1029/2005GL022738.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and N. S. Keenlyside, 2009: El Niño/Southern Oscillation response to global warming. Proc. Natl. Acad. Sci. USA, 106, 20 57820 583, doi:10.1073/pnas.0710860105.

    • Search Google Scholar
    • Export Citation
  • Latif, M., R. Kleeman, and C. Eckert, 1997: Greenhouse warming, decadal variability, or El Niño? An attempt to understand the anomalous 1990s. J. Climate, 10, 22212239.

    • Search Google Scholar
    • Export Citation
  • Lee, T., and M. J. McPhaden, 2010: Increasing intensity of El Niño in the central-equatorial Pacific. Geophys. Res. Lett., 37, L14603, doi:10.1029/2010GL044007.

    • Search Google Scholar
    • Export Citation
  • Love, B. S., A. J. Matthews, and G. J. Janacek, 2008: Real-time extraction of the Madden–Julian oscillation using empirical mode decomposition and statistical forecasting with a VARMA model. J. Climate, 21, 53185335.

    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245259.

  • Pezzulli, S., D. B. Stephenson, and A. Hannachi, 2005: The variability of seasonality. J. Climate, 18, 7188.

  • Philander, S. G., and A. V. Fedorov, 2003: Is El Niño sporadic or cyclic? Annu. Rev. Earth Planet. Sci., 31, 579594.

  • Qian, C., C. Fu, Z. Wu, and Z. Yan, 2009: On the secular change of spring onset at Stockholm. Geophys. Res. Lett., 36, L12706, doi:10.1029/2009GL038617.

    • Search Google Scholar
    • Export Citation
  • Qian, C., Z. Wu, C. Fu, and T. Zhou, 2010: On multi-timescale variability of temperature in China in modulated annual cycle reference frame. Adv. Atmos. Sci., 27, 11691182, doi:10.1007/s00376-009-9121-4.

    • Search Google Scholar
    • Export Citation
  • Qian, C., C. Fu, Z. Wu, and Z. Yan, 2011: The role of changes in the annual cycle in earlier onset of climatic spring in northern China. Adv. Atmos. Sci., 28, 284296, doi:10.1007/s00376-010-9221-1.

    • Search Google Scholar
    • Export Citation
  • Rajagopalan, B., U. Lall, and M. A. Cane, 1997: Anomalous ENSO occurrences: An alternative view. J. Climate, 10, 23512357.

  • Ruzmaikin, A., and J. Feynman, 2009: Search for climate trends in satellite data. Adv. Adapt. Data Anal., 1, 667679.

  • Setoh, T., S. Imawaki, A. Ostrovskii, and S.-I. Umatani, 1999: Interdecadal variations of ENSO signals and annual cycles revealed by wavelet analysis. J. Oceanogr., 55, 385394.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296.

    • Search Google Scholar
    • Export Citation
  • Stine, A. R., P. Huybers, and I. Y. Fung, 2009: Changes in the phase of the annual cycle of surface temperature. Nature, 457, 435440.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and F.-F. Jin, 2002: A nonlinear mechanism for decadal El Niño amplitude changes. Geophys. Res. Lett., 29, 1003, doi:10.1029/2001GL013369.

    • Search Google Scholar
    • Export Citation
  • Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 6178.

  • Torrence, C., and P. J. Webster, 1999: Interdecadal changes in the ENSO–monsoon system. J. Climate, 12, 26792690.

  • Tourre, Y. M., B. Rajagopalan, Y. Kushnir, M. Barlow, and W. B. White, 2001: Patterns of coherent decadal and interdecadal climate signals in the Pacific basin during the 20th century. Geophys. Res. Lett., 28, 20692072.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 27712777.

  • Trenberth, K. E., and T. J. Hoar, 1996: The 1990–1995 El Niño–Southern Oscillation event: Longest on record. Geophys. Res. Lett., 23, 5760.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and T. J. Hoar, 1997: El Niño and climate change. Geophys. Res. Lett., 24, 30573060.

  • van Oldenborgh, G. J., S. Y. Philip, and M. Collins, 2005: El Niño in a changing climate: A multi-model study. Ocean Sci., 1, 8195.

  • Wang, X., D. Wang, and W. Zhou, 2009: Decadal variability of twentieth-century El Niño and La Niña occurrence from observations and IPCC AR4 coupled models. Geophys. Res. Lett., 36, L11701, doi:10.1029/2009GL037929.

    • Search Google Scholar
    • Export Citation
  • Weng, H., 2005: The influence of the 11 yr solar cycle on the interannual–centennial climate variability. J. Atmos. Sol.-Terr. Phys., 67, 793805.

    • Search Google Scholar
    • Export Citation
  • Weng, H., K. Ashok, S. K. Behera, S. A. Rao, and T. Yamagata, 2007: Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Climate Dyn., 29, 113129.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., and N. E. Huang, 2009: Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal., 1, 141.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., E. S. Sarachik, and D. S. Battisti, 2001: Thermally driven tropical circulations under Rayleigh friction and Newtonian cooling: Analytic solutions. J. Atmos. Sci., 58, 724741.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., N. E. Huang, S. R. Long, and C.-K. Peng, 2007: On the trend, detrending, and variability of nonlinear and nonstationary time series. Proc. Natl. Acad. Sci. USA, 104, 14 88914 894.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., E. K. Schneider, B. P. Kirtman, E. S. Sarachik, N. E. Huang, and C. J. Tucker, 2008: The modulated annual cycle: An alternative reference frame for climate anomalies. Climate Dyn., 31, 823841.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., T. M. Smith, and R. W. Reynolds, 2003: Interdecadal changes of 30-yr SST normals during 1871–2000. J. Climate, 16, 16011612.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., J.-S. Kug, B. Dewitte, M.-H. Kwon, B. P. Kirtman, and F.-F. Jin, 2009: El Niño in a changing climate. Nature, 461, 511514, doi:10.1038/nature08316.

    • Search Google Scholar
    • Export Citation
  • Yu, J. Y., H.-Y. Kao, and T. Lee, 2010: Subtropics-related interannual sea surface temperature variability in the central equatorial Pacific. J. Climate, 23, 28692884.

    • Search Google Scholar
    • Export Citation
  • Yulaeva, E., and J. M. Wallace, 1994: The signature of ENSO in global temperature fields derived from the Microwave Sounding Unit. J. Climate, 7, 17191736.

    • Search Google Scholar
    • Export Citation
  • Zhang, Q., Y. Guan, and H. Yang, 2008: ENSO amplitude change in observation and coupled models. Adv. Atmos. Sci., 25, 331336.

  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1452 381 55
PDF Downloads 925 207 19