Abstract
The 1997/98 El Niño–induced changes in rainfall vertical structure in the east Pacific (EP) are investigated by using collocated Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and associated daily SST and 6-hourly reanalysis data during January, February, March, and April of 1998, 1999, and 2000. This study shows that there are five key parameters, that is, surface rain rate, precipitation-top height (or temperature), and precipitation growth rates at upper, middle, and low layers to define a rainfall profile, and those five key parameters are strongly influenced by both SST and large-scale dynamics. Under the influence of 1997/98 El Niño, the precipitation-top heights in the EP were systematically higher by about 1 km than those under non–El Niño conditions, while the freezing level was about 0.5 km higher. Under the constraints of rain type, surface rain rate, and the precipitation top, the shape of rainfall profile still showed significant differences: the rain growth was relatively faster in the mid-layer (−5° to +2°C isotherm) but slower in the lower layer (below +2°C isotherm) under the influence of El Niño. It is also evident that the dependence of precipitation top height on SST was stronger under large-scale decent (non–El Niño) circulations but much weaker under large-scale ascent (El Niño) circulations. The combined effect of larger vertical extent and greater growth rate in the middle layer further shifted latent heating upward as compared with the impact of horizontal changes in the rain type fractions (convective versus stratiform). Such additional latent heating shift would certainly further elevate circulation centers and strengthen the upper-layer circulation.