Climatology of Anticyclonic and Cyclonic Rossby Wave Breaking on the Dynamical Tropopause in the Southern Hemisphere

Jie Song LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Jie Song in
Current site
Google Scholar
PubMed
Close
,
Chongyin Li LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Chongyin Li in
Current site
Google Scholar
PubMed
Close
,
Jing Pan LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Jing Pan in
Current site
Google Scholar
PubMed
Close
, and
Wen Zhou Guy Carpenter Asia Pacific Climate Impact Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong, China

Search for other papers by Wen Zhou in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The characteristics of the climatological distribution of the anticyclonic (LC1) and cyclonic (LC2) Rossby wave breaking (RWB) in the Southern Hemisphere (SH) are investigated by calculating the occurrence frequency of the LC1- and LC2-like stratospheric potential vorticity (PV) streamers in the SH during the austral summer [December–February (DJF)] and wintertime [June–August (JJA)] on several isentropic surfaces by using the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) daily dataset. The results show that 1) on the equatorward flank of the climatological midlatitude jet (MLJ), the LC1-like PV streamers are frequently found over the central oceanic regions, whereas the LC2-like PV streamers are almost absent. On the poleward flank of the climatological MLJ, both types of PV streamers are frequently observed and the LC2-like PV streamers predominate; 2) the regions where the occurrences of the PV streamers are frequent overlap the weak zonal wind regions; and 3) in austral winter, a “double-jet” setting is evident in two regions of the SH [the double-jet upstream (DU) and the spilt jet region]. In the double-jet setting regions, the LC1-like PV streamers are frequently found both in the DU and the split-jet regions, while the occurrence of the LC2-like PV streamers is frequent in the split-jet region but is rather infrequent in the DU region.

Corresponding author address: W. Zhou, Guy Carpenter Asia Pacific Climate Impact Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong, China. Email: wenzhou@cityu.edu.hk

Abstract

The characteristics of the climatological distribution of the anticyclonic (LC1) and cyclonic (LC2) Rossby wave breaking (RWB) in the Southern Hemisphere (SH) are investigated by calculating the occurrence frequency of the LC1- and LC2-like stratospheric potential vorticity (PV) streamers in the SH during the austral summer [December–February (DJF)] and wintertime [June–August (JJA)] on several isentropic surfaces by using the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) daily dataset. The results show that 1) on the equatorward flank of the climatological midlatitude jet (MLJ), the LC1-like PV streamers are frequently found over the central oceanic regions, whereas the LC2-like PV streamers are almost absent. On the poleward flank of the climatological MLJ, both types of PV streamers are frequently observed and the LC2-like PV streamers predominate; 2) the regions where the occurrences of the PV streamers are frequent overlap the weak zonal wind regions; and 3) in austral winter, a “double-jet” setting is evident in two regions of the SH [the double-jet upstream (DU) and the spilt jet region]. In the double-jet setting regions, the LC1-like PV streamers are frequently found both in the DU and the split-jet regions, while the occurrence of the LC2-like PV streamers is frequent in the split-jet region but is rather infrequent in the DU region.

Corresponding author address: W. Zhou, Guy Carpenter Asia Pacific Climate Impact Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong, China. Email: wenzhou@cityu.edu.hk

Save
  • Akahori, K., and S. Yoden, 1997: Zonal flow vacillation and bimodality of baroclinic eddy life cycles in a simple global circulation model. J. Atmos. Sci., 54 , 23492361.

    • Search Google Scholar
    • Export Citation
  • Appenzeller, C., and H. C. Davies, 1992: Structure of stratospheric intrusions into the troposphere. Nature, 358 , 570572.

  • Bals-Elsholz, T. M., E. H. Atallah, L. F. Bosart, T. A. Wasula, M. J. Cempa, and A. R. Lupo, 2001: The wintertime Southern Hemisphere split jet: Structure, variability, and evolution. J. Climate, 14 , 41914215.

    • Search Google Scholar
    • Export Citation
  • Benedict, J., S. Lee, and S. B. Feldstein, 2004: Synoptic view of the North Atlantic Oscillation. J. Atmos. Sci., 61 , 121144.

  • Berrisford, P., B. J. Hoskins, and E. Tyrlis, 2007: Blocking and Rossby wave breaking on the dynamical tropopause in the Southern Hemisphere. J. Atmos. Sci., 64 , 28812898.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 1999: Characteristics of wave packets in the upper troposphere. Part II: Seasonal and hemispheric variations. J. Atmos. Sci., 56 , 17291747.

    • Search Google Scholar
    • Export Citation
  • Esler, J. G., and P. H. Haynes, 1999: Baroclinic wave breaking and the internal variability of the tropospheric circulation. J. Atmos. Sci., 56 , 40144031.

    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., and G. K. Vallis, 2009: On the zonal structure of the North Atlantic Oscillation and annular modes. J. Atmos. Sci., 66 , 332352.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and P. Zuercher, 1998: Response of baroclinic life cycles to barotropic shear. J. Atmos. Sci., 55 , 297313.

  • Hitchman, M. H., and A. S. Huesmann, 2007: A seasonal climatology of Rossby wave breaking in the 320–2000-K layer. J. Atmos. Sci., 64 , 19221940.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister, 1995: Stratosphere–troposphere exchange. Rev. Geophys., 33 , 403439.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50 , 16611671.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., 1998: Observations of Rossby waves linked to convection over the eastern tropical Pacific. J. Atmos. Sci., 55 , 321339.

    • Search Google Scholar
    • Export Citation
  • Kunz, T., K. Fraedrich, and F. Lunkeit, 2009: Impact of synoptic-scale wave breaking on the NAO and its connection with the stratosphere in ERA-40. J. Climate, 22 , 54645480.

    • Search Google Scholar
    • Export Citation
  • Lee, S., and H. K. Kim, 2003: The dynamical relationship between subtropical and eddy-driven jets. J. Atmos. Sci., 60 , 14901503.

  • Martius, O., C. Schwierz, and H. C. Davies, 2007: Breaking waves at the tropopause in the wintertime Northern Hemisphere: Climatological analyses of the orientation and the theoretical LC1/2 classification. J. Atmos. Sci., 64 , 25762592.

    • Search Google Scholar
    • Export Citation
  • McIntyre, M. E., and T. N. Palmer, 1983: Breaking planetary waves in the stratosphere. Nature, 305 , 593600.

  • McIntyre, M. E., and T. N. Palmer, 1984: The ‘surf zone’ in the stratosphere. J. Atmos. Terr. Phys., 46 , 825849.

  • Orlanski, I., 2003: Bifurcation in eddy life cycles: Implications for storm track variability. J. Atmos. Sci., 60 , 9931023.

  • Orlanski, I., 2005: A new look at the Pacific storm track variability: Sensitivity to tropical SSTs and to upstream seeding. J. Atmos. Sci., 62 , 13671390.

    • Search Google Scholar
    • Export Citation
  • Peters, D., and D. W. Waugh, 2003: Rossby wave breaking in the Southern Hemisphere wintertime upper troposphere. Mon. Wea. Rev., 131 , 26232634.

    • Search Google Scholar
    • Export Citation
  • Postel, G. A., and M. H. Hitchman, 1999: A climatology of Rossby wave breaking along the subtropical tropopause. J. Atmos. Sci., 56 , 359373.

    • Search Google Scholar
    • Export Citation
  • Postel, G. A., and M. H. Hitchman, 2001: A case study of Rossby Wave breaking along the subtropical tropopause. Mon. Wea. Rev., 129 , 25552569.

    • Search Google Scholar
    • Export Citation
  • Rivière, G., 2009: Effect of latitudinal variations in low-level baroclinicity on eddy life cycles and upper-tropospheric wave-breaking processes. J. Atmos. Sci., 66 , 15691592.

    • Search Google Scholar
    • Export Citation
  • Rivière, G., and I. Orlanski, 2007: Characteristics of the Atlantic storm-track eddy activity and its relation with the North Atlantic Oscillation. J. Atmos. Sci., 64 , 241266.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., and E. P. Lim, 2009: Biases in the calculation of Southern Hemisphere mean baroclinic eddy growth rate. Geophys. Res. Lett., 36 , L01707. doi:10.1029/2008GL036320.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and B. J. Hoskins, 1978: The life cycles of some nonlinear baroclinic waves. J. Atmos. Sci., 35 , 414432.

  • Simmons, A. J., and B. J. Hoskins, 1980: Barotropic influences on the growth and decay of nonlinear baroclinic waves. J. Atmos. Sci., 37 , 16791684.

    • Search Google Scholar
    • Export Citation
  • Strong, C., and G. Magnusdottir, 2008: Tropospheric Rossby wave breaking and the NAO/NAM. J. Atmos. Sci., 65 , 28612876.

  • Thorncroft, C. D., B. J. Hoskins, and M. E. McIntyre, 1993: Two paradigms of baroclinic-wave life-cycle behaviour. Quart. J. Roy. Meteor. Soc., 119 , 1755.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • Wernli, H., and M. Sprenger, 2007: Identification and ERA-15 climatology of potential vorticity streamers and cutoffs near the extratropical tropopause. J. Atmos. Sci., 64 , 15691586.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1164 557 132
PDF Downloads 685 161 17