• Alexander, M. A., I. Blade, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scotte, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15 , 22052231.

    • Search Google Scholar
    • Export Citation
  • Bassett, S. E., G. A. Milne, J. X. Mitrovica, and P. U. Clark, 2005: Ice sheet and solid earth influence on far-field sea-level histories. Science, 309 , 925928.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97 , 163172.

  • Blaker, A. T., B. Sinha, V. O. Ivchenko, N. C. Wells, and V. B. Zalesny, 2006: Identifying the roles of the ocean and atmosphere in creating a rapid equatorial response to a Southern Ocean anomaly. Geophys. Res. Lett., 33 , L06720. doi:10.1029/2005GL025474.

    • Search Google Scholar
    • Export Citation
  • Blunier, T., and E. J. Brook, 2001: Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science, 291 , 109112.

    • Search Google Scholar
    • Export Citation
  • Bond, G. C., and R. Lotti, 1995: Iceberg discharges into the North Atlantic on millennial time scales during the last glaciations. Science, 267 , 10051010.

    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., S. Levitus, J. I. Antonov, R. A. Locamini, and H. E. Garcia, 2005: Linear trends in salinity for the world ocean, 1955–1998. Geophys. Res. Lett., 32 , L01604. doi:10.1029/2004GL021791.

    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., 1991: The great ocean conveyor. Oceanography, 4 , 7989.

  • Broecker, W. S., 1998: Paleocean circulation during the last deglaciation: A bipolar seesaw? Paleoceanography, 13 , 119121.

  • Broecker, W. S., 2000: Was a change in thermohaline circulation responsible for the Little Ice Age? Proc. Natl. Acad. Sci. USA, 97 , 13391342.

    • Search Google Scholar
    • Export Citation
  • Chang, P., L. Ji, and H. Li, 1997: A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air-sea interactions. Nature, 385 , 516518.

    • Search Google Scholar
    • Export Citation
  • Chang, P., and Coauthors, 2008: Oceanic link between abrupt changes in the North Atlantic Ocean and the African monsoon. Nat. Geosci., 1 , 444448.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and C. M. Bitz, 2005: Influence of high latitude ice cover on the marine intertropical convergence zone. Climate Dyn., 25 , 477496.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., W. Cheng, and C. M. Bitz, 2008a: Fast teleconnections to the tropical Atlantic sector from Atlantic thermohaline adjustment. Geophys. Res. Lett., 35 , L07704. doi:10.1029/2008GL033292.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., Y. Fang, and P. Chang, 2008b: Interhemispheric thermal gradient and tropical Pacific climate. Geophys. Res. Lett., 35 , L14704. doi:10.1029/2008GL034166.

    • Search Google Scholar
    • Export Citation
  • Clark, P. U., R. B. Alley, L. D. Keigwin, J. M. Licciardi, S. J. Johnsen, and H. X. Wang, 1996: Origin of the first global meltwater pulse following the Last Glacial Maximum. Paleoceanography, 11 , 563577.

    • Search Google Scholar
    • Export Citation
  • Clark, P. U., N. G. Pisias, T. F. Stocker, and A. J. Weaver, 2002: The role of the thermohaline circulation in abrupt climate change. Nature, 415 , 863869.

    • Search Google Scholar
    • Export Citation
  • Doake, C. S. M., H. F. J. Corr, H. Rott, P. Skvarca, and N. W. Young, 1998: Breakup and conditions for stability of the northern Larsen Ice Shelf, Antarctica. Nature, 391 , 778780.

    • Search Google Scholar
    • Export Citation
  • Gille, S. T., 2002: Warming of the Southern Ocean since the 1950s. Science, 295 , 12751277.

  • Gong, D., and S. Wang, 1998: Antarctic Oscillation: Concept and applications. Chin. Sci. Bull., 43 , 734738.

  • Huang, E. Q., and J. Tian, 2008: Melt-water-pulse (MWP) events and abrupt climate change of the last deglaciation. Chin. Sci. Bull., 53 , 28682878.

    • Search Google Scholar
    • Export Citation
  • Ivchenko, V. O., V. B. Zalesny, and M. R. Drinkwater, 2004: Can the equatorial ocean quickly respond to Antarctic sea ice/salinity anomalies? Geophys. Res. Lett., 31 , L15310. doi:10.1029/2004GL020472.

    • Search Google Scholar
    • Export Citation
  • Ivchenko, V. O., V. B. Zalesny, M. R. Drinkwater, and J. Schröter, 2006: A quick response of the equatorial ocean to Antarctic sea ice/salinity anomalies. J. Geophys. Res., 111 , C10018. doi:10.1029/2005JC003061.

    • Search Google Scholar
    • Export Citation
  • Jacob, R., 1997: Low frequency variability in a simulated atmosphere-ocean system. Ph.D. dissertation, University of Wisconsin—Madison, 155 pp.

  • Jacobs, S., 2006: Observations of change in the Southern Ocean. Philos. Trans. Roy. Soc. London, A364 , 16571681.

  • Kanfoush, S. L., D. A. Hodell, C. D. Charles, T. P. Guilderson, P. G. Mortyn, and U. S. Ninnermann, 2000: Millennial-scale instability of the Antarctic Ice Sheet during the last glaciation. Science, 288 , 18151818.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., and S. Xie, 1994: Equatorward propagation of coupled air–sea disturbances with application to the annual cycle of eastern tropical Pacific. J. Atmos. Sci., 51 , 38073822.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., S. G. H. Philander, and R. C. Pacanowski, 1994: A GCM study of tropical–subtropical upper-ocean water exchange. J. Phys. Oceanogr., 24 , 26062623.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., J. Kutzbach, and L. Wu, 2000: Modeling climatic shift of El Nin˜o variability in the Holocene. Geophys. Res. Lett., 27 , 22652268.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., and Coauthors, 2009: Transient simulation of last deglaciation with a new mechanism for Bølling-Allerød warming. Science, 325 , 310314.

    • Search Google Scholar
    • Export Citation
  • Matei, D., N. Keenlyside, M. Latif, and J. Jungclaus, 2008: Subtropical forcing of tropical Pacific climate and decadal ENSO modulation. J. Climate, 21 , 46914709.

    • Search Google Scholar
    • Export Citation
  • Mayewski, P. A., and Coauthors, 2009: State of the Antarctic and Southern Ocean climate system. Rev. Geophys., 47 , RG1003. doi:10.1029/2007RG000231.

    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., and P. Lu, 1994: Interaction between the subtropical and equatorial ocean circulations: The subtropical cell. J. Phys. Oceanogr., 24 , 466497.

    • Search Google Scholar
    • Export Citation
  • Peltier, W., and L. Solheim, 2004: The climate of the earth at Last Glacial Maximum: Statistical equilibrium state and a mode of internal variability. Quat. Sci. Rev., 23 , 335357.

    • Search Google Scholar
    • Export Citation
  • Peterson, R. G., and W. B. White, 1998: Slow oceanic teleconnections linking the Antarctic circumpolar wave with the tropical El Niño-Southern Oscillation. J. Geophys. Res., 103 , 2457324583.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., 2002: Ocean circulation and climate during the past 120,000 years. Nature, 419 , 207214.

  • Richardson, G., M. R. Wadley, K. J. Heywood, D. P. Stevens, and H. T. Banks, 2005: Short-term climate response to a freshwater pulse in the Southern Ocean. Geophys. Res. Lett., 32 , L03702. doi:10.1029/2004GL021586.

    • Search Google Scholar
    • Export Citation
  • Rignot, E., J. L. Bamber, M. R. van den Broeke, C. Davis, Y. Li, W. J. van de Berg, and E. van Meijgaard, 2008: Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nat. Geosci., 1 , 106110.

    • Search Google Scholar
    • Export Citation
  • Seidov, D., and M. Maslin, 2001: Atlantic Ocean heat piracy and the bipolar climate see-saw during the Heinrich and Dansgaard–Oeschger events. J. Quat. Sci., 16 , 321328.

    • Search Google Scholar
    • Export Citation
  • Seidov, D., E. J. Barron, and B. J. Haupt, 2001: Meltwater and the global ocean conveyor: Northern versus southern connections. Global Planet. Change, 30 , 253266.

    • Search Google Scholar
    • Export Citation
  • Seidov, D., R. J. Stouffer, and B. J. Haupt, 2005: Is there a simple bi-polar ocean seesaw? Global Planet. Change, 49 , 1927.

  • Shackleton, N. J., M. A. Hall, and E. Vincent, 2000: Phase relationships between millennial-scale events 64,000-24,000 years ago. Paleoceanography, 15 , 565569.

    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., 1998: The seesaw effect. Science, 282 , 6162.

  • Stouffer, R. J., D. Seidov, and B. J. Haupt, 2007: Climate response to external sources of freshwater: North Atlantic versus the Southern Ocean. J. Climate, 20 , 436448.

    • Search Google Scholar
    • Export Citation
  • Swingedouw, D., T. Fichefet, H. Goosse, and M. F. Loutre, 2008: Impact of transient freshwater releases in the Southern Ocean on the AMOC and climate. Climate Dyn., 33 , 365381. doi:10.1007/s00382-008-0496-1.

    • Search Google Scholar
    • Export Citation
  • Venegas, S., and M. R. Drinkwater, 2001: Sea ice, atmosphere, and upper ocean variability in the Weddell Sea, Antarctica. J. Geophys. Res., 106 , 1674716766.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., O. A. Saenko, P. U. Clark, and J. X. Mitrovica, 2003: Meltwater pulse 1A from Antarctic as a trigger of the Bølling-Allerød warm interval. Science, 299 , 17091713.

    • Search Google Scholar
    • Export Citation
  • White, W. B., and R. G. Peterson, 1996: An Antarctic circumpolar wave in surface pressure, wind, temperature and sea-ice extent. Nature, 380 , 699702.

    • Search Google Scholar
    • Export Citation
  • Wu, L., and Z. Liu, 2005: North Atlantic decadal variability: Air–sea coupling, oceanic memory, and potential Northern Hemisphere resonance. J. Climate, 18 , 11011120.

    • Search Google Scholar
    • Export Citation
  • Wu, L., Z. Liu, R. Gallimore, R. Jacob, D. Lee, and Y. Zhong, 2003: A coupled modeling study of Pacific decadal variability: The tropical mode and the North Pacific mode. J. Climate, 16 , 11011120.

    • Search Google Scholar
    • Export Citation
  • Wu, L., F. He, Z. Liu, and C. Li, 2007a: Atmospheric teleconnection of tropical Atlantic variability: Interhemispheric, tropical–extratropical and cross-basin interaction. J. Climate, 20 , 856870.

    • Search Google Scholar
    • Export Citation
  • Wu, L., Z. Liu, C. Li, and Y. Sun, 2007b: Extratropical control of recent tropical Pacific decadal climate variability: A relay teleconnection. Climate Dyn., 28 , 99112. doi:10.1007/s00382-006-0198-5.

    • Search Google Scholar
    • Export Citation
  • Wu, L., C. Li, C. Yang, and S.-P. Xie, 2008: Global teleconnections in response to a shutdown of the Atlantic meridional overturning circulation. J. Climate, 21 , 30023019.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., 1999: A dynamic ocean–atmosphere model of the tropical Atlantic decadal variability. J. Climate, 12 , 6470.

  • Xie, S-P., and S. G. H. Philander, 1994: A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus, 46A , 340350.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., Y. Tanimoto, H. Noguchi, and T. Matsuno, 1999: How and why climate variability differs between the tropical Pacific and Atlantic. Geophys. Res. Lett., 26 , 16091612.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., and D. G. Martinson, 2000: Antarctic sea ice extent variability and its global connectivity. J. Climate, 13 , 16971717.

  • Yuan, X., M. A. Cane, and D. G. Martinson, 1996: Cycling around the South Pole. Nature, 380 , 673674.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 237 132 5
PDF Downloads 177 90 3

Global Teleconnections in Response to Freshening over the Antarctic Ocean

View More View Less
  • 1 Physical Oceanography Laboratory, Ocean University of China, Qingdao, China
Restricted access

Abstract

In this paper, coupled ocean–atmosphere responses to freshening over the Antarctic Ocean are investigated in a fully coupled model with a series of sensitivity experiments. In the model, 1.0 Sv (1 Sv ≡ 106 m3 s−1) of freshwater flux is uniformly imposed over the Antarctic Ocean for 400 yr, while the ocean and atmosphere remain fully coupled both locally and elsewhere. The model explicitly demonstrates that a freshening of the Antarctic Ocean can induce a significant local cooling coupled with an intensification of the westerly winds and expansion of sea ice. Furthermore, the cooling can extend to the entire southern extratropical and tropical oceans coupled with an intensification of southeasterly trades and the equatorial trade winds. Some modest warm anomalies also occur in the northern extratropical oceans, forming a sharp interhemispheric SST contrast.

A series of sensitivity experiments are conducted to understand the mechanisms responsible for transmitting the southern high latitude cooling to the tropics and the Northern Hemisphere. Experimental results demonstrate the important role of the surface coupled wind–evaporation–SST feedback and in turn changes of the subtropical–tropical meridional overturning circulation in conveying the southern high-latitude temperature anomalies to the tropics. The interhemispheric seesaw originates from the tropical–northern extratropical atmospheric teleconnection and is sustained by the subductive process of Antarctic subsurface warming. The Atlantic meridional overturning circulation is intensified in the first few decades of the freshwater forcing over the Antarctic Ocean because of a shutdown of the Antarctic deep convection, but it subsequently decreases because of the spreading of the fresh anomalies from the Southern Ocean to the Northern Ocean.

Corresponding author address: Dr. Lixin Wu, Physical Oceanography Laboratory, Ocean University of China, 238 Songling Road, Qingdao 266100, China. Email: lxwu@ouc.edu.cn

Abstract

In this paper, coupled ocean–atmosphere responses to freshening over the Antarctic Ocean are investigated in a fully coupled model with a series of sensitivity experiments. In the model, 1.0 Sv (1 Sv ≡ 106 m3 s−1) of freshwater flux is uniformly imposed over the Antarctic Ocean for 400 yr, while the ocean and atmosphere remain fully coupled both locally and elsewhere. The model explicitly demonstrates that a freshening of the Antarctic Ocean can induce a significant local cooling coupled with an intensification of the westerly winds and expansion of sea ice. Furthermore, the cooling can extend to the entire southern extratropical and tropical oceans coupled with an intensification of southeasterly trades and the equatorial trade winds. Some modest warm anomalies also occur in the northern extratropical oceans, forming a sharp interhemispheric SST contrast.

A series of sensitivity experiments are conducted to understand the mechanisms responsible for transmitting the southern high latitude cooling to the tropics and the Northern Hemisphere. Experimental results demonstrate the important role of the surface coupled wind–evaporation–SST feedback and in turn changes of the subtropical–tropical meridional overturning circulation in conveying the southern high-latitude temperature anomalies to the tropics. The interhemispheric seesaw originates from the tropical–northern extratropical atmospheric teleconnection and is sustained by the subductive process of Antarctic subsurface warming. The Atlantic meridional overturning circulation is intensified in the first few decades of the freshwater forcing over the Antarctic Ocean because of a shutdown of the Antarctic deep convection, but it subsequently decreases because of the spreading of the fresh anomalies from the Southern Ocean to the Northern Ocean.

Corresponding author address: Dr. Lixin Wu, Physical Oceanography Laboratory, Ocean University of China, 238 Songling Road, Qingdao 266100, China. Email: lxwu@ouc.edu.cn

Save