Intraseasonal Modulation of the North Pacific Storm Track by Tropical Convection in Boreal Winter

Yi Deng School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by Yi Deng in
Current site
Google Scholar
PubMed
Close
and
Tianyu Jiang School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by Tianyu Jiang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The modulation of the North Pacific storm track by tropical convection on intraseasonal time scales (30–90 days) in boreal winter (December–March) is investigated using the NCEP–NCAR reanalysis and NOAA satellite outgoing longwave radiation (OLR) data. Multivariate empirical orthogonal function (MEOF) analysis and case compositing based upon the principal components (PCs) of the EOFs reveal substantial changes in the structure and intensity of the Pacific storm track quantified by vertically (925–200 mb) averaged synoptic eddy kinetic energy (SEKE) during the course of a typical Madden–Julian oscillation (MJO) event. The storm-track response is characterized by an amplitude-varying dipole propagating northeastward as the center of the anomalous tropical convection moves eastward across the eastern Indian Ocean and the western-central Pacific. A diagnosis of the SEKE budget indicates that the storm-track anomaly is induced primarily by changes in the convergence of energy flux, baroclinic conversion, and energy generation due to the interaction between synoptic eddies and intraseasonal flow anomalies. This demonstrates the important roles played by eddy–mean flow interaction and eddy–eddy interaction in the development of the extratropical response to MJO variability. The feedback of synoptic eddy to intraseasonal flow anomalies is pronounced: when the center of the enhanced tropical convection is located over the Maritime Continent (western Pacific), the anomalous synoptic eddy forcing partly drives an upper-tropospheric anticyclonic (cyclonic) and, to its south, a cyclonic (anticyclonic) circulation anomaly over the North Pacific. Associated with the storm-track anomaly, a three-band (dry–wet–dry) anomaly in both precipitable water and surface precipitation propagates poleward over the eastern North Pacific and induces intraseasonal variations in the winter hydroclimate over western North America.

Corresponding author address: Yi Deng, School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, GA 30332-0340. Email: yi.deng@eas.gatech.edu

Abstract

The modulation of the North Pacific storm track by tropical convection on intraseasonal time scales (30–90 days) in boreal winter (December–March) is investigated using the NCEP–NCAR reanalysis and NOAA satellite outgoing longwave radiation (OLR) data. Multivariate empirical orthogonal function (MEOF) analysis and case compositing based upon the principal components (PCs) of the EOFs reveal substantial changes in the structure and intensity of the Pacific storm track quantified by vertically (925–200 mb) averaged synoptic eddy kinetic energy (SEKE) during the course of a typical Madden–Julian oscillation (MJO) event. The storm-track response is characterized by an amplitude-varying dipole propagating northeastward as the center of the anomalous tropical convection moves eastward across the eastern Indian Ocean and the western-central Pacific. A diagnosis of the SEKE budget indicates that the storm-track anomaly is induced primarily by changes in the convergence of energy flux, baroclinic conversion, and energy generation due to the interaction between synoptic eddies and intraseasonal flow anomalies. This demonstrates the important roles played by eddy–mean flow interaction and eddy–eddy interaction in the development of the extratropical response to MJO variability. The feedback of synoptic eddy to intraseasonal flow anomalies is pronounced: when the center of the enhanced tropical convection is located over the Maritime Continent (western Pacific), the anomalous synoptic eddy forcing partly drives an upper-tropospheric anticyclonic (cyclonic) and, to its south, a cyclonic (anticyclonic) circulation anomaly over the North Pacific. Associated with the storm-track anomaly, a three-band (dry–wet–dry) anomaly in both precipitable water and surface precipitation propagates poleward over the eastern North Pacific and induces intraseasonal variations in the winter hydroclimate over western North America.

Corresponding author address: Yi Deng, School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, GA 30332-0340. Email: yi.deng@eas.gatech.edu

Save
  • Black, R. X., 1997: Deducing anomalous wave source regions during the life cycles of persistent flow anomalies. J. Atmos. Sci., 54 , 895907.

    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., 1976: A climatological spectral study of the 500-mb geopotential height of the Northern Hemisphere. J. Atmos. Sci., 33 , 16071623.

    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., J. M. Wallace, N. C. Lau, and S. L. Mullen, 1977: An observational study of the Northern Hemisphere wintertime circulation. J. Atmos. Sci., 34 , 10401053.

    • Search Google Scholar
    • Export Citation
  • Cai, M., and M. Mak, 1990: Symbiotic relation between planetary- and synoptic-scale waves. J. Atmos. Sci., 47 , 29532968.

  • Chang, E. K. M., 2001: GCM and observational diagnoses of the seasonal and interannual variations of the Pacific storm track during the cool season. J. Atmos. Sci., 58 , 17841800.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 2003: Midwinter suppression of the Pacific storm-track activity as seen in aircraft observations. J. Atmos. Sci., 60 , 13451358.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 2007: Assessing the increasing trend in Northern Hemisphere winter storm-track activity using surface ship observations and a statistical storm-track model. J. Climate, 20 , 56075628.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., and I. Orlanski, 1993: On the dynamics of a storm track. J. Atmos. Sci., 50 , 9991015.

  • Chang, E. K. M., and Y. Fu, 2002: Interdecadal variations in Northern Hemisphere winter storm-track intensity. J. Climate, 15 , 642658.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., S. Lee, and K. L. Swanson, 2002: Storm-track dynamics. J. Climate, 15 , 21632183.

  • Deng, Y., and M. Mak, 2005: An idealized model study relevant to the dynamics of the midwinter minimum of the Pacific storm track. J. Atmos. Sci., 62 , 12091225.

    • Search Google Scholar
    • Export Citation
  • Deng, Y., and M. Mak, 2006: Nature of the differences in the intraseasonal variability of the Pacific and Atlantic storm tracks: A diagnostic study. J. Atmos. Sci., 63 , 26022615.

    • Search Google Scholar
    • Export Citation
  • Dole, R. M., and N. D. Gordon, 1983: Persistent anomalies of the extratropical Northern Hemisphere wintertime circulation: Geographical distribution and regional persistence characteristics. Mon. Wea. Rev., 111 , 15671586.

    • Search Google Scholar
    • Export Citation
  • Dole, R. M., and R. X. Black, 1990: Life cycles of persistent anomalies. Part II: The development of persistent negative height anomalies over the North Pacific Ocean. Mon. Wea. Rev., 118 , 824846.

    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18 , 10161022.

  • Egger, J., and K. M. Weickmann, 2007: Latitude–height structure of the atmospheric angular momentum cycle associated with the Madden–Julian oscillation. Mon. Wea. Rev., 135 , 15641575.

    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., and G. K. Vallis, 2009: On the zonal structure of the North Atlantic oscillation and annular modes. J. Atmos. Sci., 66 , 332352.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., S. W. Lyons, and S. Nigam, 1989: Transients and the extratropical response to El Niño. J. Atmos. Sci., 46 , 163174.

  • Higgins, R. W., and K. C. Mo, 1997: Persistent North Pacific circulation anomalies and the tropical intraseasonal oscillation. J. Climate, 10 , 223244.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., J.-K. E. Schemm, W. Shi, and A. Leetmaa, 2000: Extreme precipitation events in the western United States related to tropical forcing. J. Climate, 13 , 793820.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., and M. Ting, 1994: Organization of extratropical transients during El Niño. J. Climate, 7 , 745766.

  • Holopainen, E. O., 1990: Role of cyclone-scale eddies in the general circulation of the atmosphere: A review of recent observational studies. Extratropical Cyclones: The Erik Palmen Memorial Volume, C. W. Newton and E. O. Holopainen, Eds., Amer. Meteor. Soc., 48–62.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109 , 813829.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50 , 16611671.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and G.-Y. Yang, 2000: The equatorial response to higher-latitude forcing. J. Atmos. Sci., 57 , 11971213.

  • Hoskins, B. J., I. N. James, and G. H. White, 1983: The shape, propagation, and mean-flow interaction of large-scale weather systems. J. Atmos. Sci., 40 , 15951612.

    • Search Google Scholar
    • Export Citation
  • Jones, C., 2000: Occurrence of extreme precipitation events in California and relationships with the Madden–Julian oscillation. J. Climate, 13 , 35763587.

    • Search Google Scholar
    • Export Citation
  • Jones, C., D. E. Waliser, K. M. Lau, and W. Stern, 2004: Global occurrences of extreme precipitation and the Madden–Julian oscillation: Observations and predictability. J. Climate, 17 , 45754589.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kiladis, G. N., 1998: Observations of Rossby waves linked to convection over the eastern tropical Pacific. J. Atmos. Sci., 55 , 321339.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., and K. M. Weickmann, 1992a: Circulation anomalies associated with tropical convection during northern winter. Mon. Wea. Rev., 120 , 19001923.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., and K. M. Weickmann, 1992b: Extratropical forcing of tropical pacific convection during northern winter. Mon. Wea. Rev., 120 , 19241939.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50–Year Reanalysis: Monthly means CD–ROM and documentation. Bull. Amer. Meteor. Soc., 82 , 247267.

    • Search Google Scholar
    • Export Citation
  • Lau, N. C., 1988: Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. J. Atmos. Sci., 45 , 27182743.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77 , 12751277.

    • Search Google Scholar
    • Export Citation
  • Lin, H., G. Brunet, and J. Derome, 2009: An observed connection between the North Atlantic Oscillation and the Madden–Julian oscillation. J. Climate, 22 , 364380.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50-day period. J. Atmos. Sci., 29 , 11091123.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122 , 814837.

  • Mak, M. K., 1969: Laterally driven stochastic motions in the tropics. J. Atmos. Sci., 26 , 4164.

  • Matthews, A. J., and G. N. Kiladis, 1999: The tropical–extratropical interaction between high-frequency transients and the Madden–Julian oscillation. Mon. Wea. Rev., 127 , 661677.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., B. J. Hoskins, and M. Masutani, 2004: The global response to tropical heating in the Madden–Julian oscillation during the northern winter. Quart. J. Roy. Meteor. Soc., 130 , 19912011.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., 1999: Alternating dry and wet episodes over California and intraseasonal oscillations. Mon. Wea. Rev., 127 , 27592776.

  • Mo, K. C., and R. E. Livezey, 1986: Tropical–extratropical geopotential height teleconnections during the Northern Hemisphere winter. Mon. Wea. Rev., 114 , 24882515.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and R. W. Higgins, 1998a: Tropical influences on California precipitation. J. Climate, 11 , 412430.

  • Mo, K. C., and R. W. Higgins, 1998b: Tropical convection and precipitation regimes in the western United States. J. Climate, 11 , 24042423.

    • Search Google Scholar
    • Export Citation
  • Myoung, B., and Y. Deng, 2009: Interannual variability of the cyclonic activity along the U.S. Pacific Coast: Influences on the characteristics of winter precipitation in the western United States. J. Climate, 22 , 57325747.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., 1992: Midwinter suppression of baroclinic wave activity in the Pacific. J. Atmos. Sci., 49 , 16291642.

  • Nakamura, H., T. Izumi, and T. Sampe, 2002: Interannual and decadal modulations recently observed in the pacific storm-track activity and East Asian winter monsoon. J. Climate, 15 , 18551874.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., and J. Katzfey, 1991: The life cycle of a cyclone wave in the Southern Hemisphere. Part I: Eddy energy budget. J. Atmos. Sci., 48 , 19721998.

    • Search Google Scholar
    • Export Citation
  • Pan, L., and T. Li, 2008: Interaction between the tropical ISO and midlatitude low-frequency flow. Climate Dyn., 31 , 375388.

  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Penny, S., G. H. Roe, and D. S. Battisti, 2010: The source of the midwinter suppression in storminess over the North Pacific. J. Climate, 23 , 634648.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., J. E. Walsh, and D. J. Charlevoix, 2008: Severe and Hazardous Weather: An Introduction to High-Impact Meteorology. 3rd ed. Kendall/Hunt Publishing Company, 642 pp.

    • Search Google Scholar
    • Export Citation
  • Rivière, G., and I. Orlanski, 2007: Characteristics of the Atlantic storm-track eddy activity and its relation with the North Atlantic Oscillation. J. Atmos. Sci., 64 , 241266.

    • Search Google Scholar
    • Export Citation
  • Straus, D. M., and R. S. Lindzen, 2000: Planetary-scale baroclinic instability and the MJO. J. Atmos. Sci., 57 , 36093626.

  • Straus, D. M., and J. Shukla, 1997: Variations of midlatitude transient dynamics associated with ENSO. J. Atmos. Sci., 54 , 777790.

  • Straus, D. M., and J. Shukla, 2002: Does ENSO Force the PNA? J. Climate, 15 , 23402358.

  • Tomas, R. A., and P. J. Webster, 1994: Horizontal and vertical structure of cross-equatorial wave propagation. J. Atmos. Sci., 51 , 14171430.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1986: An assessment of the impact of transient eddies on the zonal flow during a blocking episode using localized Eliassen–Palm flux diagnostics. J. Atmos. Sci., 43 , 20702087.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. W. Hurrell, 1994: Decadal atmosphere–ocean variations in the Pacific. Climate Dyn., 9 , 303319.

  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109 , 784812.

    • Search Google Scholar
    • Export Citation
  • Weickmann, K. M., 1983: Intraseasonal circulation and outgoing longwave radiation modes during Northern Hemisphere winter. Mon. Wea. Rev., 111 , 18381858.

    • Search Google Scholar
    • Export Citation
  • Weickmann, K. M., G. R. Lussky, and J. E. Kutzbach, 1985: Intraseasonal (30–60 day) fluctuations of outgoing longwave radiation and 250 mb streamfunction during northern winter. Mon. Wea. Rev., 113 , 941961.

    • Search Google Scholar
    • Export Citation
  • Weickmann, K. M., S. J. S. Khalsa, and J. Eischeid, 1992: The atmospheric angular-momentum cycle during the tropical Madden–Julian oscillation. Mon. Wea. Rev., 120 , 22522263.

    • Search Google Scholar
    • Export Citation
  • Weickmann, K. M., G. Kiladis, and P. Sardeshmukh, 1997: The dynamics of intraseasonal atmospheric angular momentum oscillations. J. Atmos. Sci., 54 , 14451461.

    • Search Google Scholar
    • Export Citation
  • Welch, B. L., 1947: The generalization of “Student’s” problem when several different population variances are involved. Biometrika, 34 , 2835.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO Index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132 , 19171932.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., and M. M. Lu, 1983: Equatorially trapped waves at the 200-mb level and their association with meridional convergence of wave energy flux. J. Atmos. Sci., 40 , 27852803.

    • Search Google Scholar
    • Export Citation
  • Yang, G. Y., and B. J. Hoskins, 1996: Propagation of Rossby waves of nonzero frequency. J. Atmos. Sci., 53 , 23652378.

  • Zhang, C., and P. J. Webster, 1992: Laterally forced equatorial perturbations in a linear model. Part I: Stationary transient forcing. J. Atmos. Sci., 49 , 585607.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., and S. M. Hagos, 2009: Bimodal structure and variability of large-scale diabatic heating in the tropics. J. Atmos. Sci., 66 , 36213640.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1189 810 192
PDF Downloads 470 65 7