Intercomparisons of Air–Sea Heat Fluxes over the Southern Ocean

Jiping Liu State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China, and School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by Jiping Liu in
Current site
Google Scholar
PubMed
Close
,
Tingyin Xiao State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Tingyin Xiao in
Current site
Google Scholar
PubMed
Close
, and
Liqi Chen Key Laboratory of Global Change and Marine-Atmospheric Chemistry, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China

Search for other papers by Liqi Chen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Consistency and discrepancy of air–sea latent and sensible heat fluxes (LHF and SHF, respectively) in the Southern Ocean for current-day flux products are analyzed from climatology and interannual-to-decadal variability perspectives. Five flux products are examined, including the National Oceanography Centre, Southampton flux dataset version 2 (NOCS2), the National Centers for Environmental Prediction/Department of Energy Global Reanalysis 2 (NCEP-2), the 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40), the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data version 3 (HOAPS-3), and the objectively analyzed air–sea fluxes (OAFlux).

Comparisons suggest that most datasets show encouraging agreement in the spatial distribution of the annual-mean LHF, the meridional profile of the zonal-averaged LHF, the leading empirical orthogonal function (EOF) mode of the LHF and SHF, and the large-scale response of the LHF and SHF to the Antarctic Oscillation (AAO) and El Niño–Southern Oscillation (ENSO). However, substantial spatiotemporal discrepancies are noteworthy. The largest across-data scatter is found in the central Indian sector of the Antarctic Circumpolar Current (ACC) for the annual-mean LHF, and in the Atlantic and Indian sectors of the ACC for the annual-mean SHF, which is comparable to and even larger than their respective interannual variability. The zonal mean of the SHF varies widely across the datasets in the ACC. There is a large spread in the seasonal cycle for the LHF and SHF among the datasets, particularly in the cold season. The datasets show interannual variability of various amplitudes and decadal trends of different signs. The flux variability of the NOCS2 is substantially different from the other datasets. Possible attributions of the identified discrepancies for these flux products are discussed based on the availability of the input meteorological state variables.

Corresponding author address: Jiping Liu, LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China. Email: jliu@lasg.iap.ac.cn

Abstract

Consistency and discrepancy of air–sea latent and sensible heat fluxes (LHF and SHF, respectively) in the Southern Ocean for current-day flux products are analyzed from climatology and interannual-to-decadal variability perspectives. Five flux products are examined, including the National Oceanography Centre, Southampton flux dataset version 2 (NOCS2), the National Centers for Environmental Prediction/Department of Energy Global Reanalysis 2 (NCEP-2), the 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40), the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data version 3 (HOAPS-3), and the objectively analyzed air–sea fluxes (OAFlux).

Comparisons suggest that most datasets show encouraging agreement in the spatial distribution of the annual-mean LHF, the meridional profile of the zonal-averaged LHF, the leading empirical orthogonal function (EOF) mode of the LHF and SHF, and the large-scale response of the LHF and SHF to the Antarctic Oscillation (AAO) and El Niño–Southern Oscillation (ENSO). However, substantial spatiotemporal discrepancies are noteworthy. The largest across-data scatter is found in the central Indian sector of the Antarctic Circumpolar Current (ACC) for the annual-mean LHF, and in the Atlantic and Indian sectors of the ACC for the annual-mean SHF, which is comparable to and even larger than their respective interannual variability. The zonal mean of the SHF varies widely across the datasets in the ACC. There is a large spread in the seasonal cycle for the LHF and SHF among the datasets, particularly in the cold season. The datasets show interannual variability of various amplitudes and decadal trends of different signs. The flux variability of the NOCS2 is substantially different from the other datasets. Possible attributions of the identified discrepancies for these flux products are discussed based on the availability of the input meteorological state variables.

Corresponding author address: Jiping Liu, LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China. Email: jliu@lasg.iap.ac.cn

Save
  • Andersson, A., S. Bakan, K. Fennig, H. Grassl, C. P. Klepp, and J. Schulz, cited. 2007: Hamburg ocean atmosphere parameters and fluxes from satellite data—HOAPS-3—monthly mean. World Data Center for Climate. [Available online at http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=HOAPS3_MONTHLY].

    • Search Google Scholar
    • Export Citation
  • Berry, D. I., and E. C. Kent, 2009: A new air–sea interaction gridded dataset from ICOADS with uncertainty estimates. Bull. Amer. Meteor. Soc., 90 , 645656.

    • Search Google Scholar
    • Export Citation
  • Brunke, M. A., C. W. Fairall, X. Zeng, L. Eymard, and J. A. Curry, 2003: Which bulk aerodynamic algorithms are least problematic in computing ocean surface turbulent fluxes? J. Climate, 16 , 619635.

    • Search Google Scholar
    • Export Citation
  • Ciasto, L. M., and D. W. J. Thompson, 2008: Observations of large-scale ocean–atmosphere interaction in the Southern Hemisphere. J. Climate, 21 , 12441259.

    • Search Google Scholar
    • Export Citation
  • Covey, C., P. J. Gleckler, T. J. Phillips, and D. C. Bader, 2006: Secular trends and climate drift in coupled ocean-atmosphere general circulation models. J. Geophys. Res., 111 , D03107. doi:10.1029/2005JD006009.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., and Coauthors, 2004: SEAFLUX. Bull. Amer. Meteor. Soc., 85 , 409424.

  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16 , 571591.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., E. Kestenare, M. Botzet, A. F. Carril, H. Drange, A. Pardaens, L. Terray, and R. Sutton, 2004: An intercomparison between the surface heat flux feedback in five coupled models, COADS, and the NCEP reanalysis. Climate Dyn., 22 , 373388.

    • Search Google Scholar
    • Export Citation
  • Gille, S. T., 2002: Warming of the Southern Ocean since the 1950s. Science, 295 , 12751277.

  • Gleckler, P. J., and B. C. Weare, 1997: Uncertainties in global ocean surface heat flux climatologies derived from ship observations. J. Climate, 10 , 27642781.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 1988: The southern-ocean and global climate. Oceanus, 31 , 3946.

  • Josey, S. A., E. C. Kent, and P. K. Taylor, 1999: New insights into the ocean heat budget closure problem from analysis of the SOC air–sea flux climatology. J. Climate, 12 , 28562880.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83 , 16311643.

    • Search Google Scholar
    • Export Citation
  • Karsten, R., and J. Marshall, 2002: Testing theories of the vertical stratification of the ACC against observations. Dyn. Atmos. Oceans, 36 , 233246.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., J. L. Antonov, T. P. Boyer, and C. Stephens, 2000: Warming of the World Ocean. Science, 287 , 22252229.

  • Liu, J., J. A. Curry, and D. G. Martinson, 2004: Interpretation of recent Antarctic sea ice variability. Geophys. Res. Lett., 31 , L02205. doi:10.1029/2003GL018732.

    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37 , 25502562.

  • Mayewski, P. A., and Coauthors, 2009: State of the Antarctic and Southern Ocean climate system. Rev. Geophys., 47 , RG1003. doi:10.1029/2007RG000231.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and G. H. White, 1985: Teleconnections in the Southern Hemisphere. Mon. Wea. Rev., 113 , 2237.

  • Randall, D. A., and P. J. Gleckler, 1996: Systematic biases in AGCM ocean surface heat fluxes. WCRP workshop on air–sea flux fields for forcing ocean models and validating GCMS. WCRP-95, WMO/TD-762.

    • Search Google Scholar
    • Export Citation
  • Raphael, M. N., 2004: A zonal wave 3 index for the Southern Hemisphere. Geophys. Res. Lett., 31 , L23212. doi:10.1029/2004GL020365.

  • Rintoul, S. R., C. W. Hughes, and D. Olbers, 2001: The Antarctic circumpolar current system. Ocean Circulation and Climate, G. Siedler, J. Church, and J. Gould, Eds., Academic Press, 271–302.

    • Search Google Scholar
    • Export Citation
  • Russell, J. L., K. W. Dixon, A. Gnanadesikan, R. J. Stouffer, and J. R. Toggweiler, 2006: The Southern Hemisphere westerlies in a warming world: Propping open the door to the deep ocean. J. Climate, 19 , 63826390.

    • Search Google Scholar
    • Export Citation
  • Schmitz, W. J. Jr., 1996: Some global features/North Atlantic circulation. Vol. 1, On the World Ocean circulation. WHOI Tech. Rep. WHOI-96-03, 148 pp. [Available from Woods Hole Oceanographic Institution, Woods Hole, MA 02543].

    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., and R. S. Rintoul, 2001: Circulation renewal and modification of Antarctic mode and intermediate water. J. Phys. Oceanogr., 31 , 10051030.

    • Search Google Scholar
    • Export Citation
  • Speer, K., S. R. Rintoul, and B. Sloyan, 2000: The diabatic Deacon cell. J. Phys. Oceanogr., 30 , 32123222.

  • Talley, L. D., 2003: Shallow, intermediate, and deep overturning components of the global heat budget. J. Phys. Oceanogr., 33 , 530560.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and K. C. Mo, 1985: Blocking in the Southern Hemisphere. Mon. Wea. Rev., 113 , 3853.

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • U.S. CLIVAR cited. 2009: Working group on high latitude surface fluxes. [Available online at http://www.usclivar.org/Organization/HighLatitudeWG/hlatwg_USCLIVAR_report.pdf].

    • Search Google Scholar
    • Export Citation
  • Venegas, S., 2003: The Antarctic circumpolar wave: A combination of two signals? J. Climate, 16 , 25092525.

  • White, W. B., and R. G. Peterson, 1996: An Antarctic circumpolar wave in surface pressure, wind, temperature, and sea ice extent. Nature, 380 , 699702.

    • Search Google Scholar
    • Export Citation
  • Worley, S. J., S. D. Woodruff, R. W. Reynolds, S. J. Lubker, and N. Lott, 2005: ICOADS release 2.1 data and products. Int. J. Climatol., 25 , 823842.

    • Search Google Scholar
    • Export Citation
  • Yu, L., and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88 , 527539.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1617 980 257
PDF Downloads 389 90 3