A New Approach to Homogenize Daily Radiosonde Humidity Data

Aiguo Dai National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Aiguo Dai in
Current site
Google Scholar
PubMed
Close
,
Junhong Wang National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Junhong Wang in
Current site
Google Scholar
PubMed
Close
,
Peter W. Thorne Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Peter W. Thorne in
Current site
Google Scholar
PubMed
Close
,
David E. Parker Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by David E. Parker in
Current site
Google Scholar
PubMed
Close
,
Leopold Haimberger Department of Meteorology and Geophysics, University of Vienna, Vienna, Austria

Search for other papers by Leopold Haimberger in
Current site
Google Scholar
PubMed
Close
, and
Xiaolan L. Wang Climate Research Division, Science and Technology Branch, Environment Canada, Toronto, Ontario, Canada

Search for other papers by Xiaolan L. Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Radiosonde humidity records represent the only in situ observations of tropospheric water vapor content with multidecadal length and quasi-global coverage. However, their use has been hampered by ubiquitous and large discontinuities resulting from changes to instrumentation and observing practices. Here a new approach is developed to homogenize historical records of tropospheric (up to 100 hPa) dewpoint depression (DPD), the archived radiosonde humidity parameter. Two statistical tests are used to detect changepoints, which are most apparent in histograms and occurrence frequencies of the daily DPD: a variant of the Kolmogorov–Smirnov (K–S) test for changes in distributions and the penalized maximal F test (PMFred) for mean shifts in the occurrence frequency for different bins of DPD. These tests capture most of the apparent discontinuities in the daily DPD data, with an average of 8.6 changepoints (∼1 changepoint per 5 yr) in each of the analyzed radiosonde records, which begin as early as the 1950s and ended in March 2009. Before applying breakpoint adjustments, artificial sampling effects are first adjusted by estimating missing DPD reports for cold (T < −30°C) and dry (DPD artificially set to 30°C) conditions using empirical relationships at each station between the anomalies of air temperature and vapor pressure derived from recent observations when DPD reports are available under these conditions. Next, the sampling-adjusted DPD is detrended separately for each of the 4–10 quantile categories and then adjusted using a quantile-matching algorithm so that the earlier segments have histograms comparable to that of the latest segment. Neither the changepoint detection nor the adjustment uses a reference series given the stability of the DPD series.

Using this new approach, a homogenized global, twice-daily DPD dataset (available online at www.cgd.ucar.edu/cas/catalog/) is created for climate and other applications based on the Integrated Global Radiosonde Archive (IGRA) and two other data sources. The adjusted-daily DPD has much smaller and spatially more coherent trends during 1973–2008 than the raw data. It implies only small changes in relative humidity in the lower and middle troposphere. When combined with homogenized radiosonde temperature, other atmospheric humidity variables can be calculated, and these exhibit spatially more coherent trends than without the DPD homogenization. The DPD adjustment yields a different pattern of change in humidity parameters compared to the apparent trends from the raw data. The adjusted estimates show an increase in tropospheric water vapor globally.

+ Current affiliation: CICS-NC, NOAA/National Climatic Data Center, Asheville, North Carolina

* The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: A. Dai, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. Email: adai@ucar.edu

Abstract

Radiosonde humidity records represent the only in situ observations of tropospheric water vapor content with multidecadal length and quasi-global coverage. However, their use has been hampered by ubiquitous and large discontinuities resulting from changes to instrumentation and observing practices. Here a new approach is developed to homogenize historical records of tropospheric (up to 100 hPa) dewpoint depression (DPD), the archived radiosonde humidity parameter. Two statistical tests are used to detect changepoints, which are most apparent in histograms and occurrence frequencies of the daily DPD: a variant of the Kolmogorov–Smirnov (K–S) test for changes in distributions and the penalized maximal F test (PMFred) for mean shifts in the occurrence frequency for different bins of DPD. These tests capture most of the apparent discontinuities in the daily DPD data, with an average of 8.6 changepoints (∼1 changepoint per 5 yr) in each of the analyzed radiosonde records, which begin as early as the 1950s and ended in March 2009. Before applying breakpoint adjustments, artificial sampling effects are first adjusted by estimating missing DPD reports for cold (T < −30°C) and dry (DPD artificially set to 30°C) conditions using empirical relationships at each station between the anomalies of air temperature and vapor pressure derived from recent observations when DPD reports are available under these conditions. Next, the sampling-adjusted DPD is detrended separately for each of the 4–10 quantile categories and then adjusted using a quantile-matching algorithm so that the earlier segments have histograms comparable to that of the latest segment. Neither the changepoint detection nor the adjustment uses a reference series given the stability of the DPD series.

Using this new approach, a homogenized global, twice-daily DPD dataset (available online at www.cgd.ucar.edu/cas/catalog/) is created for climate and other applications based on the Integrated Global Radiosonde Archive (IGRA) and two other data sources. The adjusted-daily DPD has much smaller and spatially more coherent trends during 1973–2008 than the raw data. It implies only small changes in relative humidity in the lower and middle troposphere. When combined with homogenized radiosonde temperature, other atmospheric humidity variables can be calculated, and these exhibit spatially more coherent trends than without the DPD homogenization. The DPD adjustment yields a different pattern of change in humidity parameters compared to the apparent trends from the raw data. The adjusted estimates show an increase in tropospheric water vapor globally.

+ Current affiliation: CICS-NC, NOAA/National Climatic Data Center, Asheville, North Carolina

* The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: A. Dai, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. Email: adai@ucar.edu

Save
  • Buck, A. L., 1981: New equations for computing vapor pressure and enhancement factor. J. Appl. Meteor., 20 , 15271532.

  • Clough, C., and M. Padovani, 2008: Upper-air moisture data void discovered and partially rectified. Bull. Amer. Meteor. Soc., 89 , 953956.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Recent climatology, variability, and trends in global surface humidity. J. Climate, 19 , 35893606.

  • Dai, A., I. Y. Fung, and A. D. Del Genio, 1997: Surface observed global land precipitation variations during 1900–88. J. Climate, 10 , 29432962.

    • Search Google Scholar
    • Export Citation
  • Dai, A., T. M. L. Wigley, B. A. Boville, J. T. Kiehl, and L. E. Buja, 2001: Climates of the twentieth and twenty-first centuries simulated by the NCAR climate system model. J. Climate, 14 , 485519.

    • Search Google Scholar
    • Export Citation
  • Della-Marta, P. M., and H. Wanner, 2006: A method of homogenizing the extremes and mean of daily temperature measurements. J. Climate, 19 , 41794197.

    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., and S. C. Sherwood, 2009: A matter of humidity. Science, 323 , 10201021.

  • Durre, I., R. S. Vose, and D. B. Wuertz, 2006: Overview of the Integrated Global Radiosonde Archive. J. Climate, 19 , 5368.

  • Durre, I., C. N. Williams Jr., X. Ying, and R. S. Vose, 2009: Radiosonde-based trends in precipitable water over the Northern Hemisphere: An update. J. Geophys. Res., 114 , D05112. doi:10.1029/2008JD010989.

    • Search Google Scholar
    • Export Citation
  • Elliott, W. P., and D. J. Gaffen, 1991: On the utility of radiosonde humidity archives for climate studies. Bull. Amer. Meteor. Soc., 72 , 15071520.

    • Search Google Scholar
    • Export Citation
  • Elliott, W. P., and D. J. Gaffen, 1993: Effects of conversion algorithms on reported upper-air dewpoint depressions. Bull. Amer. Meteor. Soc., 74 , 13231325.

    • Search Google Scholar
    • Export Citation
  • Elliott, W. P., R. J. Ross, and B. Schwartz, 1998: Effects on climate records of changes in National Weather Service humidity processing procedures. J. Climate, 11 , 24242436.

    • Search Google Scholar
    • Export Citation
  • Eskridge, R. E., O. A. Alduchov, I. V. Chernykh, P. Zhai, A. C. Polansky, and S. R. Doty, 1995: A Comprehensive Aerological Reference Data Set (CARDS): Rough and systematic errors. Bull. Amer. Meteor. Soc., 76 , 17591775.

    • Search Google Scholar
    • Export Citation
  • Gaffen, D. J., 1993: Historical changes in radiosonde instruments and practices. Instruments and Observing Methods Rep. 50, WMO/TD-541, 123 pp.

    • Search Google Scholar
    • Export Citation
  • Gaffen, D. J., 1994: Temporal inhomogeneities in radiosonde temperature records. J. Geophys. Res., 99 , 36673676.

  • Gaffen, D. J., 1996: A digitized metadata set of global upper-air station histories. NOAA Tech. Memo. ERL ARL-211, 37 pp.

  • Gaffen, D. J., T. P. Barnett, and W. P. Elliott, 1991: Space and time scales of global tropospheric moisture. J. Climate, 4 , 9891008.

    • Search Google Scholar
    • Export Citation
  • Haimberger, L., 2007: Homogenization of radiosonde temperature time series using innovation statistics. J. Climate, 20 , 13771403.

  • Haimberger, L., C. Tavolato, and S. Sperka, 2008: Toward elimination of the warm bias in historic radiosonde temperature records—Some new results from a comprehensive intercomparison of upper-air data. J. Climate, 21 , 45874606.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2000: Water vapor feedback and global warming. Annu. Rev. Energy Environ., 25 , 441475.

  • Ishihara, M., 2004: Recent tests and comparisons of radiosonde operated by Japan Meteorological Agency. Extended Abstracts, Commission for Instruments and Methods of Observation (OPAG-Upper-Air): CIMO Expert Team on Upper-Air Systems Intercomparisons and International Organization Committee (IOC) on Upper-Air Systems Intercomparisons, Geneva, Switzerland, WMO, CIMO/OPAG-UPPER-AIR/ET-UASI-1/IOC-1/Doc. 3.2(3), 8 pp.

    • Search Google Scholar
    • Export Citation
  • Lanzante, J. R., 1996: Resistant, robust and non-parametric techniques for the analysis of climate data: Theory and examples, including applications to historical radiosonde station data. Int. J. Climatol., 16 , 11971226.

    • Search Google Scholar
    • Export Citation
  • McCarthy, M. P., 2008: Spatial sampling requirements for monitoring upper-air climate change with radiosondes. Int. J. Climatol., 28 , 985993.

    • Search Google Scholar
    • Export Citation
  • McCarthy, M. P., H. A. Titchner, P. W. Thorne, S. F. B. Tett, L. Haimberger, and D. E. Parker, 2008: Assessing bias and uncertainty in the HadAT-adjusted radiosonde climate record. J. Climate, 21 , 817832.

    • Search Google Scholar
    • Export Citation
  • McCarthy, M. P., P. W. Thorne, and H. A. Titchner, 2009: An analysis of tropospheric humidity trends from radiosondes. J. Climate, 22 , 58205838.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 746–845.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., H. Seko, and Y. Shoji, 2004: Dry biases of humidity measurements from the Vaisala RS80-A and Meisei RS2-91 radiosondes and from ground-based GPS. J. Meteor. Soc. Japan, 82 , 277299.

    • Search Google Scholar
    • Export Citation
  • Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992: Numerical Recipes in Fortran 77. 2nd ed. Cambridge University Press, 933 pp.

    • Search Google Scholar
    • Export Citation
  • Qian, T., A. Dai, K. E. Trenberth, and K. W. Oleson, 2006: Simulation of global land surface conditions from 1948 to 2002. Part I: Forcing data and evaluations. J. Hydrometeor., 7 , 953975.

    • Search Google Scholar
    • Export Citation
  • Remsberg, E. E., and Coauthors, 2000: Instrumentation and data sets. SPARC assessment of upper tropospheric and stratospheric water vapour, SPARC Rep. 2, WCRP-113, WMO/TD 1043, 33–36.

    • Search Google Scholar
    • Export Citation
  • Ross, R. J., and W. P. Elliott, 1996: Tropospheric water vapor climatology and trends over North America: 1973–93. J. Climate, 9 , 35613574.

    • Search Google Scholar
    • Export Citation
  • Ross, R. J., and W. P. Elliott, 2001: Radiosonde-based Northern Hemisphere tropospheric water vapor trends. J. Climate, 14 , 16021611.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2008: Consistency of modelled and observed temperature trends in the tropical troposphere. Int. J. Climatol., 28 , 17031722.

    • Search Google Scholar
    • Export Citation
  • Sapucci, L. F., L. T. Machado, R. B. Da Silveira, G. Fisch, and J. F. G. Monico, 2005: Analysis of relative humidity sensors at the WMO radiosonde intercomparison experiment in Brazil. J. Atmos. Oceanic Technol., 22 , 664678.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., E. R. Kursinski, and W. G. Read, 2006: A distribution law for free-tropospheric relative humidity. J. Climate, 19 , 62676277.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., S. M. Uppala, D. P. Dee, and S. Kobayashi, 2007: ERA Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., K. M. Willett, P. D. Jones, P. W. Thorne, and D. P. Dee, 2010: Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational data sets. J. Geophys. Res., 115 , D01110. doi:10.1029/2009JD012442.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., K. H. Rosenlof, R. W. Portmann, J. S. Daniel, S. M. Davis, T. J. Sanford, and G.-K. Plattner, 2010: Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327 , 12191223.

    • Search Google Scholar
    • Export Citation
  • Thorne, P. W., D. E. Parker, S. F. B. Tett, P. D. Jones, M. McCarthy, H. Coleman, and P. Brohan, 2005: Revisiting radiosonde upper air temperatures from 1958 to 2002. J. Geophys. Res., 110 , D18105. doi:10.1029/2004JD005753.

    • Search Google Scholar
    • Export Citation
  • Thorne, P. W., J. R. Lanzante, T. C. Peterson, D. J. Seidel, and K. P. Shine, 2011: Tropospheric temperature trends: History of an ongoing controversy. WIRCC, 2 , 6688. doi:10.1002/wcc.80.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. Fasullo, and L. Smith, 2005: Trends and variability in column-integrated atmospheric water vapor. Climate Dyn., 24 , 741758.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., L. Smith, T. Qian, A. Dai, and J. Fasullo, 2007: Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeor., 8 , 758769.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • U.S. CCSP 2006: Temperature trends in the lower atmosphere: Steps for understanding and reconciling differences. Synthesis and Assessment Product 1.1, U.S. Climate Change Science Program, 180 pp. [Available online at http://www.climatescience.gov/Library/sap/sap1-1/default.php].

    • Search Google Scholar
    • Export Citation
  • Wade, C. G., 1994: An evaluation of problems affecting the measurement of low relative humidity on the United States radiosonde. J. Atmos. Oceanic Technol., 11 , 687700.

    • Search Google Scholar
    • Export Citation
  • Wang, J., and L. Zhang, 2008: Systematic errors in global radiosonde precipitable water data from comparisons with ground-based GPS measurements. J. Climate, 21 , 22182238.

    • Search Google Scholar
    • Export Citation
  • Wang, J., H. L. Cole, and D. J. Carlson, 2001: Water vapor variability in the tropical western Pacific from a 20-year radiosonde data. Adv. Atmos. Sci., 18 , 752766.

    • Search Google Scholar
    • Export Citation
  • Wang, J., H. L. Cole, D. J. Carlson, E. R. Miller, K. Beierle, A. Paukkunen, and T. K. Laine, 2002: Corrections of humidity measurement errors from the Vaisala RS80 radiosonde—Application to TOGA COARE data. J. Atmos. Oceanic Technol., 19 , 9811002.

    • Search Google Scholar
    • Export Citation
  • Wang, J., D. J. Carlson, D. B. Parsons, T. F. Hock, D. Lauritsen, H. L. Cole, K. Beierle, and E. Chamberlain, 2003: Performance of operational radiosonde humidity sensors in direct comparison with a chilled mirror dew-point hygrometer and its climate implication. Geophys. Res. Lett., 30 , 1860. doi:10.1029/2003GL016985.

    • Search Google Scholar
    • Export Citation
  • Wang, J., L. Zhang, A. Dai, T. Van Hove, and J. Van Baelen, 2007: A near-global, 2-hourly data set of atmospheric precipitable water from ground-based GPS measurements. J. Geophys. Res., 112 , D11107. doi:10.1029/2006JD007529.

    • Search Google Scholar
    • Export Citation
  • Wang, X. L., 2008a: Accounting for autocorrelation in detecting mean shifts in climate data series using the penalized maximal t or F test. J. Appl. Meteor. Climatol., 47 , 24232444.

    • Search Google Scholar
    • Export Citation
  • Wang, X. L., 2008b: Penalized maximal F test for detecting undocumented mean shift without trend change. J. Atmos. Oceanic Technol., 25 , 368384.

    • Search Google Scholar
    • Export Citation
  • Wang, X. L., H. Chen, Y. Wu, and Q. Pu, 2010: New techniques for the detection and adjustment of shifts in daily precipitation data series. J. Appl. Meteor. Climatol., 49 , 24162436.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., and M. Schabel, 2000: Precise climate monitoring using complementary satellite data sets. Nature, 403 , 414416.

  • Willett, K. M., P. D. Jones, N. P. Gillett, and P. W. Thorne, 2008: Recent changes in surface humidity: Development of the HadCRUH dataset. J. Climate, 21 , 53645383.

    • Search Google Scholar
    • Export Citation
  • WMO 2008: Measurement of humidity. WMO guide to meteorological instruments and methods of observation. WMO Rep. WMO-8, 14.1-14.30. [Available from http://www.wmo.int/pages/prog/www/IMOP/publications/CIMO-Guide/CIMO_Guide-7th_Edition-2008.html].

    • Search Google Scholar
    • Export Citation
  • Zhai, P. M., and R. E. Eskridge, 1996: Analyses of inhomogeneities in radiosonde temperature and humidity time series. J. Climate, 9 , 884894.

    • Search Google Scholar
    • Export Citation
  • Zhai, P. M., and R. E. Eskridge, 1997: Atmospheric water vapor over China. J. Climate, 10 , 26432652.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1982 584 119
PDF Downloads 702 146 16