Future Impact of Differential Interbasin Ocean Warming on Atlantic Hurricanes

Sang-Ki Lee Cooperative Institute for Marine and Atmospheric Studies, University of Miami, and NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Search for other papers by Sang-Ki Lee in
Current site
Google Scholar
PubMed
Close
,
David B. Enfield Cooperative Institute for Marine and Atmospheric Studies, University of Miami, and NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Search for other papers by David B. Enfield in
Current site
Google Scholar
PubMed
Close
, and
Chunzai Wang NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Search for other papers by Chunzai Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Global climate model simulations forced by future greenhouse warming project that the tropical North Atlantic (TNA) warms at a slower rate than the tropical Indo-Pacific in the twenty-first century, consistent with their projections of a weakened Atlantic thermohaline circulation. Here, an atmospheric general circulation model is used to advance a consistent physical rationale that the suppressed warming of the TNA increases the vertical wind shear and static stability aloft in the main development region (MDR) for Atlantic hurricanes, and thus decreases overall Atlantic hurricane activity in the twenty-first century. A carefully designed suite of model experiments illustrates that the preferential warming of the tropical Indo-Pacific induces a global average warming of the tropical troposphere, via a tropical teleconnection mechanism, and thus increases atmospheric static stability and decreases convection over the suppressed warming region of the TNA. The anomalous diabatic cooling, in turn, forces the formation of a stationary baroclinic Rossby wave northwest of the forcing region, consistent with Gill’s simple model of tropical atmospheric circulations, in such a way as to induce a secular increase of the MDR vertical wind shear. However, a further analysis indicates that the net effect of future greenhouse warming on the MDR vertical wind shear is less than the observed multidecadal swing of the MDR vertical wind shear in the twentieth century. Thus, it is likely that the Atlantic multidecadal oscillation will still play a decisive role over the greenhouse warming in the fate of Atlantic hurricane activity throughout the twenty-first century under the assumption that the twenty-first-century changes in interbasin SST difference, projected by the global climate model simulations, are accurate.

Corresponding author address: Dr. Sang-Ki Lee, NOAA/AOML, 4301 Rickenbacker Causeway, Miami, FL 33149. Email: sang-ki.lee@noaa.gov

Abstract

Global climate model simulations forced by future greenhouse warming project that the tropical North Atlantic (TNA) warms at a slower rate than the tropical Indo-Pacific in the twenty-first century, consistent with their projections of a weakened Atlantic thermohaline circulation. Here, an atmospheric general circulation model is used to advance a consistent physical rationale that the suppressed warming of the TNA increases the vertical wind shear and static stability aloft in the main development region (MDR) for Atlantic hurricanes, and thus decreases overall Atlantic hurricane activity in the twenty-first century. A carefully designed suite of model experiments illustrates that the preferential warming of the tropical Indo-Pacific induces a global average warming of the tropical troposphere, via a tropical teleconnection mechanism, and thus increases atmospheric static stability and decreases convection over the suppressed warming region of the TNA. The anomalous diabatic cooling, in turn, forces the formation of a stationary baroclinic Rossby wave northwest of the forcing region, consistent with Gill’s simple model of tropical atmospheric circulations, in such a way as to induce a secular increase of the MDR vertical wind shear. However, a further analysis indicates that the net effect of future greenhouse warming on the MDR vertical wind shear is less than the observed multidecadal swing of the MDR vertical wind shear in the twentieth century. Thus, it is likely that the Atlantic multidecadal oscillation will still play a decisive role over the greenhouse warming in the fate of Atlantic hurricane activity throughout the twenty-first century under the assumption that the twenty-first-century changes in interbasin SST difference, projected by the global climate model simulations, are accurate.

Corresponding author address: Dr. Sang-Ki Lee, NOAA/AOML, 4301 Rickenbacker Causeway, Miami, FL 33149. Email: sang-ki.lee@noaa.gov

Save
  • Chiang, J. C. H., and A. H. Sobel, 2002: Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate. J. Climate, 15 , 26162631.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., W. Cheng, and C. M. Bitz, 2008: Fast teleconnections to the tropical Atlantic sector from Atlantic thermohaline adjustment. Geophys. Res. Lett., 35 , L07704. doi:10.1029/2008GL033292.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and M. E. Mann, 2000: Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dyn., 16 , 661676.

    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., A. C. Clement, G. A. Vecchi, B. J. Soden, B. P. Kirtman, and S-K. Lee, 2009: Climate response of the equatorial Pacific to global warming. J. Climate, 22 , 48734892.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Enfield, D. B., and L. Cid-Serrano, 2010: Secular and multidecadal warmings in the North Atlantic and their relationships with major hurricane activity. Int. J. Climatol., 30 , 174184. doi:10.1002/joc.1881.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106 , 447462.

  • Goldenberg, S. B., and L. J. Shapiro, 1996: Physical mechanisms for the association of El Niño and West African rainfall with Atlantic major hurricane activity. J. Climate, 9 , 11691187.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1984: Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb quasi-biennial oscillation influences. Mon. Wea. Rev., 112 , 16491668.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., 1997: Implications of summertime sea level pressure anomalies in the tropical Atlantic region. J. Climate, 10 , 789804.

  • Knight, J. R., 2009: The Atlantic multidecadal oscillation inferred from the forced climate response in coupled general circulation models. J. Climate, 22 , 16101625.

    • Search Google Scholar
    • Export Citation
  • Knight, J. R., C. K. Folland, and A. A. Scaife, 2006: Climate impacts of the Atlantic multidecadal oscillation. Geophys. Res. Lett., 33 , L17706. doi:10.1029/2006GL026242.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and D. J. Vimont, 2007: A more general framework for understanding Atlantic hurricane variability and trends. Bull. Amer. Meteor. Soc., 88 , 17671781.

    • Search Google Scholar
    • Export Citation
  • Latif, M., N. Keenlyside, and J. Bader, 2007: Tropical sea surface temperature, vertical wind shear, and hurricane development. Geophys. Res. Lett., 34 , L01710. doi:10.1029/2006GL027969.

    • Search Google Scholar
    • Export Citation
  • Leloup, J., and A. C. Clement, 2009: Why is there a minimum in projected warming in the tropical North Atlantic Ocean? Geophys. Res. Lett., 36 , L14802. doi:10.1029/2009GL038609.

    • Search Google Scholar
    • Export Citation
  • Saunders, M. A., and A. S. Lea, 2008: Large contribution of sea surface warming to recent increase in Atlantic hurricane activity. Nature, 451 , 557560.

    • Search Google Scholar
    • Export Citation
  • Swanson, K. L., 2008: Nonlocality of Atlantic tropical cyclone intensities. Geochem. Geophys. Geosyst., 9 , Q04V01. doi:10.1029/2007GC001844.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and Coauthors, 2007: The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. J. Climate, 20 , 48994919.

    • Search Google Scholar
    • Export Citation
  • Ting, M., Y. Kushnir, R. Seager, and C. Li, 2009: Forced and internal twentieth-century SST trends in the North Atlantic. J. Climate, 22 , 14691481.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007a: Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450 , 10661070. doi:10.1038/nature06423.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007b: Global warming and the weakening of the tropical circulation. J. Climate, 20 , 43164340.

  • Vecchi, G. A., and B. J. Soden, 2007c: Increased tropical Atlantic wind shear in model projections of global warming. Geophys. Res. Lett., 34 , L08702. doi:10.1029/2006GL028905.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., K. L. Swanson, and B. J. Soden, 2008: Whither hurricane activity? Science, 322 , 687689. doi:10.1126/science.1164396.

  • Vimont, D. J., and J. P. Kossin, 2007: The Atlantic meridional mode and hurricane activity. Geophys. Res. Lett., 34 , L07709. doi:10.1029/2007GL029683.

    • Search Google Scholar
    • Export Citation
  • Wang, C., and S-K. Lee, 2008: Global warming and United States landfalling hurricanes. Geophys. Res. Lett., 35 , L02708. doi:10.1029/2007GL032396.

    • Search Google Scholar
    • Export Citation
  • Wang, C., D. B. Enfield, S-K. Lee, and C. W. Landsea, 2006: Influences of Atlantic warm pool on Western Hemisphere summer rainfall and Atlantic hurricanes. J. Climate, 19 , 30113028.

    • Search Google Scholar
    • Export Citation
  • Wang, C., S-K. Lee, and D. B. Enfield, 2008: Atlantic warm pool acting as a link between Atlantic multidecadal oscillation and Atlantic tropical cyclone activity. Geochem. Geophys. Geosyst., 9 , Q05V03. doi:10.1029/2007GC001809.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., C. Deser, G. A. Vecchi, J. Ma, H. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23 , 966986.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., 2007: Anticorrelated multidecadal variations between surface and subsurface tropical North Atlantic. Geophys. Res. Lett., 34 , L12713. doi:10.1029/2007GL030225.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2005: Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J. Climate, 18 , 18531860.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2006: Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett., 33 , L17712. doi:10.1029/2006GL026267.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 426 204 43
PDF Downloads 265 80 6