• Alexander, M. A., C. Deser, and M. S. Timlin, 1999: The reemergence of SST anomalies in the North Pacific Ocean. J. Climate, 12 , 24192433.

    • Search Google Scholar
    • Export Citation
  • Aoki, Y., T. Suga, and K. Hanawa, 2002: Subsurface subtropical fronts of the North Pacific as inherent boundaries in the ventilated thermocline. J. Phys. Oceanogr., 32 , 22992311.

    • Search Google Scholar
    • Export Citation
  • Capotondi, A., M. A. Alexander, and C. Deser, 2003: Why are there Rossby wave maxima at 10°S and 13°N in the Pacific? J. Phys. Oceanogr., 33 , 15491563.

    • Search Google Scholar
    • Export Citation
  • Ceballos, L. I., E. Di Lorenzo, C. D. Hoyos, N. Schneider, and B. Taguchi, 2009: North Pacific Gyre Oscillation synchronizes climate fluctuations in the eastern and western boundary systems. J. Climate, 22 , 51635174.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19 , 643674.

    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, and M. S. Timlin, 1996: Upper ocean thermal variations in the North Pacific during 1970–91. J. Climate, 9 , 18401855.

    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, and M. S. Timlin, 1999: Evidence for a wind-driven intensification of the Kuroshio Current Extension from the 1970s to the 1980s. J. Climate, 12 , 16971706.

    • Search Google Scholar
    • Export Citation
  • DiNezio, P., A. Clement, and G. A. Vecchi, 2010: Reconciling differing views of tropical Pacific climate change. Eos, Trans. Amer. Geophys. Union, 91 .doi:10.1029/2010EO160001.

    • Search Google Scholar
    • Export Citation
  • Du, Y., and S-P. Xie, 2008: Role of atmospheric adjustments in the tropical Indian Ocean warming during the 20th century in climate models. Geophys. Res. Lett., 35 , L08712. doi:10.1029/2008GL033631.

    • Search Google Scholar
    • Export Citation
  • GFDL Global Atmospheric Model Development Team, 2004: The new GFDL global atmosphere and land model AM2/LM2: Evaluation with prescribed SST simulations. J. Climate, 17 , 46414673.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part II: The baseline ocean simulation. J. Climate, 19 , 675697.

    • Search Google Scholar
    • Export Citation
  • Hanawa, K., 1987: Interannual variations of the winter-tie outcrop area of subtropical mode water in the western North Pacific Ocean. Atmos.–Ocean, 25 , 358374.

    • Search Google Scholar
    • Export Citation
  • Hanawa, K., and L. D. Talley, 2001: Mode waters. Ocean Circulation and Climate, International Geophysics Series, G. Siedler et al., Eds., Elsevier, 373–386.

    • Search Google Scholar
    • Export Citation
  • Hosoda, S., S.-P. Xie, K. Takeuchi, and M. Nonaka, 2004: Interdecadal temperature variations in the North Pacific central mode water simulated by an OGCM. J. Oceanogr., 60 , 865877.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., and B. Qiu, 1994: Three-dimensional structure of the wind-driven circulation in the subtropical North Pacific. J. Phys. Oceanogr., 24 , 16081622.

    • Search Google Scholar
    • Export Citation
  • Kobashi, F., H. Mitsudera, and S-P. Xie, 2006: Three subtropical fronts in the North Pacific: Observational evidence for mode water–induced subsurface frontogensis. J. Geophys. Res., 111 , C09033. doi:10.1029/2006JC003479.

    • Search Google Scholar
    • Export Citation
  • Kobashi, F., S-P. Xie, N. Iwasaka, and T. Sakamoto, 2008: Deep atmospheric response to the North Pacific oceanic subtropical front in spring. J. Climate, 21 , 59605975.

    • Search Google Scholar
    • Export Citation
  • Kubokawa, A., 1999: Ventilated thermocline strongly affected by a deep mixed layer: A theory for subtropical countercurrent. J. Phys. Oceanogr., 29 , 13141333.

    • Search Google Scholar
    • Export Citation
  • Kubokawa, A., and T. Inui, 1999: Subtropical countercurrent in an idealized ocean GCM. J. Phys. Oceanogr., 29 , 13031313.

  • Kubokawa, A., and S-P. Xie, 2002: On steady response of a ventilated thermocline to enhanced Ekman pumping. J. Oceanogr., 58 , 565575.

    • Search Google Scholar
    • Export Citation
  • Ladd, C., and L. Thompson, 2001: Water mass formation in an isopycnal model of the North Pacific. J. Phys. Oceanogr., 31 , 15171537.

  • Ladd, C., and L. Thompson, 2002: Decadal variability of North Pacific central mode water. J. Phys. Oceanogr., 32 , 28702881.

  • Lee, H.-C., 2009: Impact of atmospheric CO2 doubling on the North Pacific subtropical mode water. Geophys. Res. Lett., 36 , L06602. doi:10.1029/2008GL037075.

    • Search Google Scholar
    • Export Citation
  • Liu, Q., and H. Hu, 2007: A subsurface pathway for low potential vorticity transport from the central North Pacific toward Taiwan Island. Geophys. Res. Lett., 34 , L12710. doi:10.1029/2007GL029510.

    • Search Google Scholar
    • Export Citation
  • Liu, Q., and L. Li, 2007: Baroclinic stability of oceanic Rossby wave in the North Pacific subtropical eastward countercurrent. Chinese J. Geophys., 50 , 8493.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., 1993: Interannual positive feedbacks in a simple extratropical air–sea coupling system. J. Atmos. Sci., 50 , 30223028.

  • Liu, Z., and M. Alexander, 2007: Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev. Geophys., 45 , RG2005. doi:10.1029/2005RG000172.

    • Search Google Scholar
    • Export Citation
  • Luo, Y., Q. Liu, and L. M. Rothstein, 2009: Simulated response of North Pacific mode waters to global warming. Geophys. Res. Lett., 36 , L23609. doi:10.1029/2009GL040906.

    • Search Google Scholar
    • Export Citation
  • Luyten, J. R., J. Pedlosky, and H. Stommel, 1983: The ventilated thermocline. J. Phys. Oceanogr., 13 , 292309.

  • Miller, A. J., D. R. Cayan, and W. White, 1998: A westward-intensified decadal change in the North Pacific thermocline and gyre-scale circulation. J. Climate, 11 , 31123127.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., 1996: A pycnostad on the bottom of the ventilated portion in the central subtropical North Pacific: Its distribution and formation. J. Oceanogr., 52 , 171188.

    • Search Google Scholar
    • Export Citation
  • Nonaka, M., H. Nakamura, Y. Tanimoto, T. Kagimoto, and H. Sasaki, 2006: Decadal variability in the Kuroshio–Oyashio Extension simulated in an eddy-resolving OGCM. J. Climate, 19 , 19701989.

    • Search Google Scholar
    • Export Citation
  • Oka, E., S. Kouketsu, K. Toyama, K. Uehara, T. Kobayashi, S. Hosoda, and T. Suga, 2011: Formation and subduction of central mode water based on profiling float data, 2003–08. J. Phys. Oceanogr., 41 , 113129.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., 1999: Seasonal eddy field modulation of the North Pacific Subtropical Countercurrent: TOPEX/Poseidon observations and theory. J. Phys. Oceanogr., 29 , 24712468.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2005: Variability of the Kuroshio Extension jet, recirculation gyre, and mesoscale eddies on decadal timescales. J. Phys. Oceanogr., 35 , 20902103.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2006: Decadal variability in the formation of the North Pacific subtropical mode water: Oceanic versus atmospheric control. J. Phys. Oceanogr., 36 , 13651380.

    • Search Google Scholar
    • Export Citation
  • Qu, T., and J. Chen, 2009: A North Pacific decadal variability in subduction rate. Geophys. Res. Lett., 36 , L22602. doi:10.1029/2009GL040914.

    • Search Google Scholar
    • Export Citation
  • Qu, T., S-P. Xie, H. Mitsudera, and A. Ishida, 2002: Subduction of the North Pacific mode waters in a global eddy-resolving GCM. J. Phys. Oceanogr., 32 , 746763.

    • Search Google Scholar
    • Export Citation
  • Sasaki, H., S-P. Xie, B. Taguchi, M. Nonaka, and Y. Masumoto, 2010: Seasonal variations of the Hawaiian Lee Countercurrent induced by the meridional migration of the trade winds. Ocean Dyn., 60 , 705715.

    • Search Google Scholar
    • Export Citation
  • Sasaki, Y. N., N. Schneider, N. Maximenko, and K. Lebedev, 2010: Observational evidence for propagation of decadal spiciness anomalies in the North Pacific. Geophys. Res. Lett., 37 , L07708. doi:10.1029/2010GL042716.

    • Search Google Scholar
    • Export Citation
  • Schneider, N., and A. J. Miller, 2001: Predicting western North Pacific Ocean climate. J. Climate, 14 , 39974002.

  • Schneider, N., A. J. Miller, M. A. Alexander, and C. Deser, 1999: Subduction of decadal North Pacific temperature anomalies: Observations and dynamics. J. Phys. Oceanogr., 29 , 10561070.

    • Search Google Scholar
    • Export Citation
  • Suga, T., K. Hanawa, and Y. Toba, 1989: Subtropical mode water in the 137°E section. J. Phys. Oceanogr., 19 , 16051618.

  • Suga, T., Y. Takei, and K. Hanawa, 1997: Thermostad distribution in the North Pacific subtropical gyre: The central mode water and the subtropical mode water. J. Phys. Oceanogr., 27 , 140152.

    • Search Google Scholar
    • Export Citation
  • Sugimoto, S., and K. Hanawa, 2005: Remote reemergence areas of winter sea surface temperature anomalies in the North Pacific. Geophys. Res. Lett., 32 , L01606. doi:10.1029/2004GL021410.

    • Search Google Scholar
    • Export Citation
  • Taguchi, B., S-P. Xie, N. Schneider, M. Nonaka, H. Sasaki, and Y. Sasai, 2007: Decadal variability of the Kuroshio Extension: Observations and an eddy-resolving model hindcast. J. Climate, 20 , 23572377.

    • Search Google Scholar
    • Export Citation
  • Thompson, L., and J. T. Dawe, 2007: Propagation of wind and buoyancy forced density anomalies in the North Pacific: Dependence on ocean model resolution. Ocean Modell., 16 , 277284.

    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., S-P. Xie, F. Kobashi, and Y. Tanimoto, 2009: Local and remote influences of the Kuroshio Extension on the atmosphere. CLIVAR Variations, No. 7, International CLIVAR Project Office, Southampton, United Kingdom, 1–4.

    • Search Google Scholar
    • Export Citation
  • Uda, M., and K. Hasunuma, 1969: The eastward subtropical countercurrent in the western North Pacific Ocean. J. Oceanogr. Soc. Japan, 25 , 201210.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20 , 43164340.

  • Williams, R. G., 1991: The role of the mixed layer in setting the potential vorticity of the main thermocline. J. Phys. Oceanogr., 21 , 18031814.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., A. Rosati, N.-C. Lau, and J. J. Ploshay, 2006: GFDL’s CM2 global coupled climate models. Part III: Tropical Pacific climate and ENSO. J. Climate, 19 , 698722.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., T. Kunitani, A. Kubokawa, M. Nonaka, and S. Hosoda, 2000: Interdecadal thermocline variability in the North Pacific for 1958–97: A GCM simulation. J. Phys. Oceanogr., 30 , 27982813.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., W. T. Liu, Q. Liu, and M. Nonaka, 2001: Far-reaching effects of the Hawaiian Islands on the Pacific Ocean–atmosphere. Science, 292 , 20572060.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., C. Deser, G. A. Vecchi, J. Ma, H. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23 , 966986.

    • Search Google Scholar
    • Export Citation
  • Yamanaka, G., H. Ishizaki, M. Hirabara, and I. Ishikawa, 2008: Decadal variability of the subtropical front of the western North Pacific in an eddy-resolving ocean general circulation model. J. Geophys. Res., 113 , C12027. doi:10.1029/2008JC005002.

    • Search Google Scholar
    • Export Citation
  • Yasuda, T., and K. Hanawa, 1997: Decadal changes in the mode waters in the midlatitude North Pacific. J. Phys. Oceanogr., 27 , 858870.

    • Search Google Scholar
    • Export Citation
  • Yoshida, K., and T. Kidokoro, 1967: A subtropical countercurrent in the North Pacific—An eastward flow near the subtropical convergence. J. Oceanogr. Soc. Japan, 23 , 8891.

    • Search Google Scholar
    • Export Citation
  • Zheng, X.-T., S.-P. Xie, G. A. Vecchi, Q. Liu, and J. Hafner, 2010: Indian Ocean dipole response to global warming: Analysis of ocean–atmospheric feedbacks in a coupled model. J. Climate, 23 , 12401253.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 148 109 16
PDF Downloads 139 101 13

Dynamical Role of Mode Water Ventilation in Decadal Variability in the Central Subtropical Gyre of the North Pacific

View More View Less
  • 1 International Pacific Research Center and Department of Meteorology, University of Hawaii at Manoa, Honolulu, Hawaii, and Physical Oceanography Laboratory and Ocean–Atmosphere Interaction and Climate Laboratory, Ocean University of China, Qingdao, China
  • | 2 Physical Oceanography Laboratory and Ocean–Atmosphere Interaction and Climate Laboratory, Ocean University of China, Qingdao, China
  • | 3 Faculty of Marine Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
Restricted access

Abstract

Decadal variability in the interior subtropical North Pacific is examined in the Geophysical Fluid Dynamics Laboratory coupled model (CM2.1). Superimposed on a broad, classical subtropical gyre is a narrow jet called the subtropical countercurrent (STCC) that flows northeastward against the northeast trade winds. Consistent with observations, the STCC is anchored by mode water characterized by its low potential vorticity (PV). Mode water forms in the deep winter mixed layer of the Kuroshio–Oyashio Extension (KOE) east of Japan and flows southward riding on the subtropical gyre and preserving its low-PV characteristic. As a thick layer of uniform properties, the mode water forces the upper pycnocline to shoal, and the associated eastward shear results in the surface-intensified STCC.

On decadal time scales in the central subtropical gyre (15°–35°N, 170°E–130°W), the dominant mode of sea surface height variability is characterized by the strengthening and weakening of the STCC because of variations in mode water ventilation. The changes in mode water can be further traced upstream to variability in the mixed layer depth and subduction rate in the KOE region. Both the mean and anomalies of STCC induce significant sea surface temperature anomalies via thermal advection. Clear atmospheric response is seen in wind curls, with patterns suggestive of positive coupled feedback.

In oceanic and coupled models, northeast-slanted bands often appear in anomalies of temperature and circulation at and beneath the surface. The results of this study show that such slanted bands are characteristic of changes in mode water ventilation. Indeed, this natural mode of STCC variability is excited by global warming, resulting in banded structures in sea surface warming.

Corresponding author address: Shang-Ping Xie, International Pacific Research Center, SOEST, University of Hawaii, Honolulu, HI 96822. Email: xie@hawaii.edu

Abstract

Decadal variability in the interior subtropical North Pacific is examined in the Geophysical Fluid Dynamics Laboratory coupled model (CM2.1). Superimposed on a broad, classical subtropical gyre is a narrow jet called the subtropical countercurrent (STCC) that flows northeastward against the northeast trade winds. Consistent with observations, the STCC is anchored by mode water characterized by its low potential vorticity (PV). Mode water forms in the deep winter mixed layer of the Kuroshio–Oyashio Extension (KOE) east of Japan and flows southward riding on the subtropical gyre and preserving its low-PV characteristic. As a thick layer of uniform properties, the mode water forces the upper pycnocline to shoal, and the associated eastward shear results in the surface-intensified STCC.

On decadal time scales in the central subtropical gyre (15°–35°N, 170°E–130°W), the dominant mode of sea surface height variability is characterized by the strengthening and weakening of the STCC because of variations in mode water ventilation. The changes in mode water can be further traced upstream to variability in the mixed layer depth and subduction rate in the KOE region. Both the mean and anomalies of STCC induce significant sea surface temperature anomalies via thermal advection. Clear atmospheric response is seen in wind curls, with patterns suggestive of positive coupled feedback.

In oceanic and coupled models, northeast-slanted bands often appear in anomalies of temperature and circulation at and beneath the surface. The results of this study show that such slanted bands are characteristic of changes in mode water ventilation. Indeed, this natural mode of STCC variability is excited by global warming, resulting in banded structures in sea surface warming.

Corresponding author address: Shang-Ping Xie, International Pacific Research Center, SOEST, University of Hawaii, Honolulu, HI 96822. Email: xie@hawaii.edu

Save