Extratropical Atmospheric Response to the Atlantic Niño Decaying Phase

Javier García-Serrano Departamento de Geofisica y Meteorologia, Facultad de CC Fisicas, Universidad Complutense de Madrid, Madrid, Spain

Search for other papers by Javier García-Serrano in
Current site
Google Scholar
PubMed
Close
,
Teresa Losada Departamento de Geofisica y Meteorologia, Facultad de CC Fisicas, Universidad Complutense de Madrid, Madrid, Spain

Search for other papers by Teresa Losada in
Current site
Google Scholar
PubMed
Close
, and
Belén Rodríguez-Fonseca Departamento de Geofisica y Meteorologia, Facultad de CC Fisicas, Universidad Complutense de Madrid, Madrid, Spain

Search for other papers by Belén Rodríguez-Fonseca in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Atlantic Niño or Atlantic Equatorial Mode (EM) is the dominant coupled variability phenomenon in the tropical Atlantic basin during boreal summer. From the 1970s, the mode has changed, evolving in time from east to west and without persisting until the following winter. In a previous observational work, the authors have studied the atmospheric response to the EM during the 1979–2005 period, proposing three main issues along the decaying phase of this mode: 1) the continuous confinement of the anomalous deep convection over northeastern Brazil following the thermal-forcing decay; 2) an increasing dipole-like precipitation anomaly with dry conditions in the Florida–Gulf of Mexico region; and 3) the excitation of Rossby waves forced by the remaining upper-tropospheric divergence that are trapped into the subtropical jet but do not show a robust impact on the European sector.

In this work, a 10-member ensemble simulation for the recent EM with the University of California, Los Angeles AGCM model has been analyzed for assessing the evolution of the atmospheric response to the summer Atlantic Niño decay. Results from the sensitivity experiment support that the former and the latter findings can be interpreted in terms of the Atlantic thermal forcing; while the negative rainfall anomalies in the western subtropical basin require an external forcing outside the tropical Atlantic. Prior studies point at the peaking Pacific El Niño as a potential player.

An important conclusion of this work is that the seasonal atmospheric response to the Atlantic Niño decaying phase is mainly determined by the climatological jet stream’s position and intensity. In this way, this response shows an arching pattern over the North Atlantic region during summer–autumn and a zonally oriented wave train during autumn–winter.

* Current affiliation: Institut Catala de Ciencies del Clima, Barcelona, Spain

Corresponding author address: J. García-Serrano, Facultad CC Fisicas, Universidad Complutense de Madrid, Ave. Séneca 2, 28040 Madrid, Spain. Email: javigarcia@fis.ucm.es

Abstract

The Atlantic Niño or Atlantic Equatorial Mode (EM) is the dominant coupled variability phenomenon in the tropical Atlantic basin during boreal summer. From the 1970s, the mode has changed, evolving in time from east to west and without persisting until the following winter. In a previous observational work, the authors have studied the atmospheric response to the EM during the 1979–2005 period, proposing three main issues along the decaying phase of this mode: 1) the continuous confinement of the anomalous deep convection over northeastern Brazil following the thermal-forcing decay; 2) an increasing dipole-like precipitation anomaly with dry conditions in the Florida–Gulf of Mexico region; and 3) the excitation of Rossby waves forced by the remaining upper-tropospheric divergence that are trapped into the subtropical jet but do not show a robust impact on the European sector.

In this work, a 10-member ensemble simulation for the recent EM with the University of California, Los Angeles AGCM model has been analyzed for assessing the evolution of the atmospheric response to the summer Atlantic Niño decay. Results from the sensitivity experiment support that the former and the latter findings can be interpreted in terms of the Atlantic thermal forcing; while the negative rainfall anomalies in the western subtropical basin require an external forcing outside the tropical Atlantic. Prior studies point at the peaking Pacific El Niño as a potential player.

An important conclusion of this work is that the seasonal atmospheric response to the Atlantic Niño decaying phase is mainly determined by the climatological jet stream’s position and intensity. In this way, this response shows an arching pattern over the North Atlantic region during summer–autumn and a zonally oriented wave train during autumn–winter.

* Current affiliation: Institut Catala de Ciencies del Clima, Barcelona, Spain

Corresponding author address: J. García-Serrano, Facultad CC Fisicas, Universidad Complutense de Madrid, Ave. Séneca 2, 28040 Madrid, Spain. Email: javigarcia@fis.ucm.es

Save
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15 , 22052231.

    • Search Google Scholar
    • Export Citation
  • Ambrizzi, T., B. J. Hoskins, and H.-H. Hsu, 1995: Rossby wave propagation and teleconnection patterns in the austral winter. J. Atmos. Sci., 52 , 36613672.

    • Search Google Scholar
    • Export Citation
  • Baines, P. G., and C. K. Folland, 2007: Evidence for a rapid global climate shift across the late 1960s. J. Climate, 20 , 27212744.

  • Branstator, G., 1983: Horizontal energy propagation in a barotropic atmosphere with meridional and zonal structure. J. Atmos. Sci., 40 , 16891708.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., 2002: Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J. Climate, 15 , 18931910.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., X. Cao, B. S. Giese, and A. M. Da Silva, 1996: Decadal and interannual SST variability in the tropical Atlantic Ocean. J. Phys. Oceanogr., 26 , 11651175.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18 , 34833505.

  • Ding, Q., and B. Wang, 2007: Intraseasonal teleconnection between the summer Eurasian wave train and the Indian monsoon. J. Climate, 20 , 37513767.

    • Search Google Scholar
    • Export Citation
  • Drévillon, M., C. Cassou, and L. Terray, 2003: Model study of the North Atlantic region atmospheric response to autumn tropical Atlantic sea surface temperature anomalies. Quart. J. Roy. Meteor. Soc., 129 , 25912611.

    • Search Google Scholar
    • Export Citation
  • Fedorov, A., and S. G. Philander, 2000: Is El Niño changing? Science, 288 , 19972002.

  • Frankignoul, C., and E. Kestenare, 2005a: Air–sea interactions in the Tropical Atlantic: A view based on lagged rotated maximum covariance analysis. J. Climate, 18 , 38743890.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and E. Kestenare, 2005b: Observed Atlantic SST anomaly impact on the NAO: An update. J. Climate, 18 , 40894094.

  • García-Serrano, J., T. Losada, B. Rodríguez-Fonseca, and I. Polo, 2008: Tropical Atlantic variability modes (1979–2002). Part II: Time-evolving atmospheric circulation related to SST-forced tropical convection. J. Climate, 21 , 64766497.

    • Search Google Scholar
    • Export Citation
  • Giannini, A., Y. Kushnir, and M. A. Cane, 2000: Interannual variability of Caribbean rainfall, ENSO, and the Atlantic Ocean. J. Climate, 13 , 297311.

    • Search Google Scholar
    • Export Citation
  • Giannini, A., R. Saravanan, and P. Chang, 2004: The preconditioning role of Tropical Atlantic Variability in the development of the ENSO teleconnection: Implications for the prediction of Nordeste rainfall. Climate Dyn., 22 , 839855.

    • Search Google Scholar
    • Export Citation
  • Haarsma, R. J., and W. Hazeleger, 2007: Extratropical atmospheric response to equatorial Atlantic cold tongue anomalies. J. Climate, 20 , 20762091.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38 , 11791196.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50 , 16611671.

    • Search Google Scholar
    • Export Citation
  • Huang, B., and J. Shukla, 2005: Ocean–atmosphere interactions in the tropical and subtropical Atlantic Ocean. J. Climate, 18 , 16521672.

    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., R. A. Plumb, and M. Ting, 1989: Examples of the horizontal propagation of quasi-stationary waves. J. Atmos. Sci., 46 , 28022811.

    • Search Google Scholar
    • Export Citation
  • Keenlyside, N. S., and M. Latif, 2007: Understanding equatorial Atlantic interannual variability. J. Climate, 20 , 131142.

  • Kiladis, G. N., and H. F. Diaz, 1989: Global climatic anomalies associated with extremes in the Southern Oscillation. J. Climate, 2 , 10691090.

    • Search Google Scholar
    • Export Citation
  • Kucharski, F., A. Bracco, J. H. Yoo, and F. Molteni, 2007: Low-frequency variability of the Indian monsoon–ENSO relationship and the tropical Atlantic: The “weakening” of the 1980s and 1990s. J. Climate, 20 , 42554266.

    • Search Google Scholar
    • Export Citation
  • Kucharski, F., A. Bracco, J. H. Yoo, and F. Molteni, 2008: Atlantic forced component of the Indian monsoon interannual variability. Geophys. Res. Lett., 35 , L04706. doi:10.1029/2007GL033037.

    • Search Google Scholar
    • Export Citation
  • Kucharski, F., A. Bracco, J. H. Yoo, A. Tompkins, L. Feudale, P. Ruti, and A. Dell’Aquila, 2009: A Gill–Matsuno-type mechanism explains the tropical Atlantic influence on African and Indian monsoon rainfall. Quart. J. Roy. Meteor. Soc., 135 , 569579.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and L. Peng, 1992: Dynamics of atmospheric teleconnections during the Northern summer. J. Climate, 5 , 140158.

  • Losada, T., B. Rodríguez-Fonseca, S. Janicot, S. Gervois, F. Chauvin, and P. Ruti, 2009a: A multimodel approach to the Atlantic Equatorial mode. Impact on the West African monson. Climate Dyn., 35 , 2943.

    • Search Google Scholar
    • Export Citation
  • Losada, T., B. Rodríguez-Fonseca, I. Polo, S. Janicot, S. Gervois, F. Chauvin, and P. Ruti, 2009b: Tropical response to the Atlantic Equatorial mode: AGCM multimodel approach. Climate Dyn., 35 , 4552.

    • Search Google Scholar
    • Export Citation
  • Mechoso, C. R., J. Y. Yu, and A. Arakawa, 2000: A coupled GCM pilgrimage: From climate catastrophe to ENSO simulations. General Circulation Model Development: Past, Present and Future. Proceedings of a Symposium in Honor of Professor Akio Arakawa, D. A. Randall, Ed., Academic, 539–575.

    • Search Google Scholar
    • Export Citation
  • Melice, J. L., and J. Servain, 2003: The tropical Atlantic meridional SST gradient index and its relationships with the SOI, NAO and Southern Ocean. Climate Dyn., 20 , 447464.

    • Search Google Scholar
    • Export Citation
  • Okumura, Y., and S.-P. Xie, 2006: Some overlooked features of tropical Atlantic climate leading to a new Niño-like phenomenon. J. Climate, 19 , 58595874.

    • Search Google Scholar
    • Export Citation
  • Peng, S., W. A. Robinson, S. Li, and M. P. Hoerling, 2005: Tropical Atlantic SST forcing of coupled North Atlantic seasonal responses. J. Climate, 18 , 480496.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1985: On the three-dimensional propagation of stationary waves. J. Atmos. Sci., 42 , 217229.

  • Polo, I., B. Rodríguez-Fonseca, T. Losada, and J. García-Serrano, 2008: Tropical Atlantic variability modes (1979–2002). Part I: Time-evolving SST modes related to West African rainfall. J. Climate, 21 , 64576475.

    • Search Google Scholar
    • Export Citation
  • Richter, I., C. R. Mechoso, and A. W. Robertson, 2008: What determines the position and intensity of the South Atlantic anticyclone in austral winter? J. Climate, 21 , 214229.

    • Search Google Scholar
    • Export Citation
  • Rodríguez-Fonseca, B., I. Polo, J. García-Serrano, T. Losada, E. Mohino, C. R. Mechoso, and F. Kucharski, 2009: Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys. Res. Lett., 36 , L20705. doi:10.1029/2009GL040048.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1987: Global- and regional-scale patterns associated with the El Niño–Southern Oscillation. Mon. Wea. Rev., 115 , 16061626.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1989: Precipitation patterns associated with the high index phase of the Southern Oscillation. J. Climate, 2 , 268284.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1996: Quantifying Southern Oscillation–precipitation relationships. J. Climate, 9 , 10431059.

  • Ruíz-Barradas, A., J. A. Carton, and S. Nigam, 2000: Structure of interannual-to-decadal climate variability in the Tropical Atlantic sector. J. Climate, 13 , 32853297.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and R. W. Reynolds, 2003: Extended reconstruction of global sea surface temperatures based on COADS data (1854–1997). J. Climate, 16 , 14951510.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., S. P. Jewson, and D. P. Rowell, 2000: The elements of climate variability in the tropical Atlantic region. J. Climate, 13 , 32613284.

    • Search Google Scholar
    • Export Citation
  • Terray, P., and S. Dominiak, 2005: Indian Ocean sea surface temperature and El Niño–Southern Oscillation: A new perspective. J. Climate, 18 , 13511368.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical seas surface temperatures. J. Geophys. Res., 103 , 1429114324.

    • Search Google Scholar
    • Export Citation
  • Vizy, E. K., and K. H. Cook, 2002: Development and application of a mesoscale climate model for the tropics: Influence of sea surface temperature anomalies on the West African monsoon. J. Geophys. Res., 107 , 4026. doi:10.1029/2001JD000686.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., and F. W. Zwiers, 2001: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

  • Wang, C., 2006: An overlooked feature of tropical climate: Inter-Pacific–Atlantic variability. Geophys. Res. Lett., 33 , L12702. doi:10.1029/2006GL026324.

    • Search Google Scholar
    • Export Citation
  • Wu, L., F. He, Z. Liu, and C. Li, 2007: Atmospheric teleconnections of tropical Atlantic variability: Interhemispheric, tropical–extratropical, and cross-basin interactions. J. Climate, 20 , 856870.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and J. A. Carton, 2004: Tropical Atlantic variability: Patterns, mechanisms, and impacts. Earth Climate: The Ocean–Atmosphere Interaction, C. Wang et al., Eds., Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 121–142.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., 1993: Air–sea interaction in the equatorial Atlantic region. J. Climate, 6 , 15671586.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 354 95 12
PDF Downloads 237 64 10