Impact of Global Ocean Surface Warming on Seasonal-to-Interannual Climate Prediction

Jing-Jia Luo Research Institute for Global Change, JAMSTEC, Yokohama, Japan

Search for other papers by Jing-Jia Luo in
Current site
Google Scholar
PubMed
Close
,
Swadhin K. Behera Research Institute for Global Change, JAMSTEC, Yokohama, Japan

Search for other papers by Swadhin K. Behera in
Current site
Google Scholar
PubMed
Close
,
Yukio Masumoto Department of Earth and Planetary Science, The University of Tokyo, Tokyo, and Research Institute for Global Change, JAMSTEC, Yokohama, Japan

Search for other papers by Yukio Masumoto in
Current site
Google Scholar
PubMed
Close
, and
Toshio Yamagata Department of Earth and Planetary Science, The University of Tokyo, Tokyo, and Research Institute for Global Change, JAMSTEC, Yokohama, Japan

Search for other papers by Toshio Yamagata in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Surface air temperature (SAT) over the globe, particularly the Northern Hemisphere continents, has rapidly risen over the last 2–3 decades, leading to an abrupt shift toward a warmer climate state after 1997/98. Whether the terrestrial warming might be caused by local response to increasing greenhouse gas (GHG) concentrations or by sea surface temperature (SST) rise is recently in dispute. The SST warming itself may be driven by both the increasing GHG forcing and slowly varying natural processes. Besides, whether the recent global warming might affect seasonal-to-interannual climate predictability is an important issue to be explored. Based on the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) climate prediction system in which only observed SSTs are assimilated for coupled model initialization, the present study shows that the historical SST rise plays a key role in driving the intensified terrestrial warming over the globe. The SST warming trend, while negligible for short lead predictions, has substantial impact on the climate predictability at long lead times (>1 yr) particularly in the extratropics. The tropical climate predictability, however, is little influenced by global warming. Given a perfect warming trend and/or a perfect model, global SAT and precipitation could be predicted beyond two years in advance with an anomaly correlation skill above ∼0.6.

Without assimilating ocean subsurface observations, model initial conditions show a strong spurious cooling drift of subsurface temperature; this is caused by large negative surface heat flux damping arising from the SST-nudging initialization. The spurious subsurface cooling drift acts to weaken the initial SST warming trend during model forecasts, leading to even negative trends of global SAT and precipitation at long lead times and hence deteriorating the global climate predictability. Concerning the important influence of the subsurface temperature on the global SAT trend, future efforts are required to develop a good scheme for assimilating subsurface information particularly in the extratropical oceans.

Corresponding author address: Jing-Jia Luo, Research Institute for Global Change, JAMSTEC, 3173-25 Showa-machi, Kanazawa-ku, Yokohama, Kanagawa 236-0001, Japan. Email: luo@jamstec.go.jp

Abstract

Surface air temperature (SAT) over the globe, particularly the Northern Hemisphere continents, has rapidly risen over the last 2–3 decades, leading to an abrupt shift toward a warmer climate state after 1997/98. Whether the terrestrial warming might be caused by local response to increasing greenhouse gas (GHG) concentrations or by sea surface temperature (SST) rise is recently in dispute. The SST warming itself may be driven by both the increasing GHG forcing and slowly varying natural processes. Besides, whether the recent global warming might affect seasonal-to-interannual climate predictability is an important issue to be explored. Based on the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) climate prediction system in which only observed SSTs are assimilated for coupled model initialization, the present study shows that the historical SST rise plays a key role in driving the intensified terrestrial warming over the globe. The SST warming trend, while negligible for short lead predictions, has substantial impact on the climate predictability at long lead times (>1 yr) particularly in the extratropics. The tropical climate predictability, however, is little influenced by global warming. Given a perfect warming trend and/or a perfect model, global SAT and precipitation could be predicted beyond two years in advance with an anomaly correlation skill above ∼0.6.

Without assimilating ocean subsurface observations, model initial conditions show a strong spurious cooling drift of subsurface temperature; this is caused by large negative surface heat flux damping arising from the SST-nudging initialization. The spurious subsurface cooling drift acts to weaken the initial SST warming trend during model forecasts, leading to even negative trends of global SAT and precipitation at long lead times and hence deteriorating the global climate predictability. Concerning the important influence of the subsurface temperature on the global SAT trend, future efforts are required to develop a good scheme for assimilating subsurface information particularly in the extratropical oceans.

Corresponding author address: Jing-Jia Luo, Research Institute for Global Change, JAMSTEC, 3173-25 Showa-machi, Kanazawa-ku, Yokohama, Kanagawa 236-0001, Japan. Email: luo@jamstec.go.jp

Save
  • Ajayamohan, R. S., S. A. Rao, J.-J. Luo, and T. Yamagata, 2009: Influence of Indian Ocean Dipole on boreal summer intraseasonal oscillations in a coupled general circulation model. J. Geophys. Res., 114 , D06119. doi:10.1029/2008JD011096.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., M. S. Timlin, and J. D. Scott, 2001: Winter-to-winter recurrence of sea surface temperature, salinity and mixed layer depth anomalies. Prog. Oceanogr., 49 , 4161.

    • Search Google Scholar
    • Export Citation
  • Behera, S. K., J.-J. Luo, S. Masson, P. Delecluse, S. Gualdi, A. Navarra, and T. Yamagata, 2005: Paramount impact of the Indian Ocean dipole on the East African short rain: A CGCM study. J. Climate, 18 , 45144530.

    • Search Google Scholar
    • Export Citation
  • Behera, S. K., J.-J. Luo, S. Masson, S. A. Rao, H. Sakuma, and T. Yamagata, 2006: A CGCM study on the interaction between IOD and ENSO. J. Climate, 19 , 16881705.

    • Search Google Scholar
    • Export Citation
  • Bekryaev, R. V., I. V. Polyakov, and V. A. Alexeev, 2010: Role of polar amplification in long-term surface air temperature variations and modern Arctic warming. J. Climate, 23 , 38883906.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., 2000: A study of atmosphere–ocean predictability on long time scales. Climate Dyn., 16 , 469477.

  • Cai, M., C.-S. Shin, H. M. Van den Dool, W. Wang, S. Saha, and A. Kumar, 2009: The role of long-term trends in seasonal predictions: Implication of global warming in the NCEP CFS. Wea. Forecasting, 24 , 965973.

    • Search Google Scholar
    • Export Citation
  • Cherchi, A., S. Gualdi, S. Behera, J.-J. Luo, S. Masson, T. Yamagata, and A. Navarra, 2007: The influence of tropical Indian Ocean SST on the Indian summer monsoon. J. Climate, 20 , 30833105.

    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., S.-P. Xie, J.-J. Luo, J. Hafner, S. Behera, Y. Masumoto, and T. Yamagata, 2011: Predictability of Northwest Pacific climate during summer and the role of the tropical Indian Ocean. Climate Dyn., 36 , 607621. doi:10.1007/s00382-009-0686-5.

    • Search Google Scholar
    • Export Citation
  • Church, J. A., N. J. White, and J. M. Arblaster, 2005: Significant decadal-scale impact of volcanic eruptions on sea level and ocean heat content. Nature, 438 , 7477.

    • Search Google Scholar
    • Export Citation
  • Collins, M., 2002: Climate predictability on interannual to decadal time scales: The initial value problem. Climate Dyn., 19 , 671692.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and M. R. Allen, 2002: Assessing the relative roles of initial and boundary conditions in interannual to decadal climate predictability. J. Climate, 15 , 31043109.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and P. D. Sardeshmukh, 2009: Oceanic influences on recent continental warming. Climate Dyn., 32 , 333342.

  • Cox, P., and D. Stephenson, 2007: A changing climate for prediction. Science, 317 , 207208.

  • Doblas-Reyes, F. J., R. Hagedorn, T. N. Palmer, and J.-J. Morcrette, 2006: Impact of increasing greenhouse gas concentrations in seasonal ensemble forecasts. Geophys. Res. Lett., 33 , L07708. doi:10.1029/2005GL025061.

    • Search Google Scholar
    • Export Citation
  • Dommenget, D., 2009: The ocean’s role in continental climate variability and change. J. Climate, 22 , 49394952.

  • Dong, B., J. M. Gregory, and R. T. Sutton, 2009: Understanding land–sea warming contrast in response to increasing greenhouse gases. Part I: Transient adjustment. J. Climate, 22 , 30793097.

    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., N. P. Gillett, and D. W. J. Thompson, 2010: Comparing variability and trends in observed and modelled global-mean surface temperature. Geophys. Res. Lett., 37 , L16802. doi:10.1029/2010GL044255.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and K. Bryan, 1997: Predictability of North Atlantic multidecadal climate variability. Science, 275 , 181184.

  • Gualdi, S., A. Navarra, E. Guilyardi, and P. Delecluse, 2003: Assessment of the tropical Indo-Pacific climate in the SINTEX CGCM. Ann. Geophys., 46 , 126.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., P. Delecluse, S. Gualdi, and A. Navarra, 2003: Mechanisms for ENSO phase change in a coupled GCM. J. Climate, 16 , 11411158.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19 , 56865699.

  • Hermanson, L., and R. T. Sutton, 2009: Case studies in interannual to decadal climate predictability. Climate Dyn., 35 , 11691189. doi:10.1007/s00382-009-0672-y.

    • Search Google Scholar
    • Export Citation
  • Hong, C.-C., T. Li, and J.-J. Luo, 2008: Asymmetry of the Indian Ocean dipole. Part II: Model diagnosis. J. Climate, 21 , 48494858.

  • Izumo, T., C. Montegut, J.-J. Luo, S. Behera, S. Masson, and T. Yamagata, 2008: The role of the western Arabian Sea upwelling in Indian monsoon rainfall variability. J. Climate, 21 , 56035623.

    • Search Google Scholar
    • Export Citation
  • Jin, E. K., and Coauthors, 2008: Current status of ENSO prediction skill in coupled ocean–atmosphere models. Climate Dyn., 31 , 647664.

    • Search Google Scholar
    • Export Citation
  • Joshi, M. M., J. M. Gregory, M. J. Webb, D. M. H. Sexton, and T. C. Johns, 2008: Mechanisms for the land/sea warming contrast exhibited by simulations of climate change. Climate Dyn., 30 , 455465.

    • Search Google Scholar
    • Export Citation
  • Karnauskas, K. B., R. Seager, A. Kaplan, Y. Kushnir, and M. A. Cane, 2009: Observed strengthening of the zonal sea surface temperature gradient across the equatorial Pacific Ocean. J. Climate, 22 , 43164321.

    • Search Google Scholar
    • Export Citation
  • Keenlyside, N. S., M. Latif, J. Jungclaus, L. Kornblueh, and E. Roeckner, 2008: Advancing decadal-scale climate prediction in the North Atlantic sector. Nature, 453 , 8488.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., T. Li, S.-I. An, I.-S. Kang, J.-J. Luo, S. Masson, and T. Yamagata, 2006: Role of the ENSO–Indian Ocean coupling on ENSO variability in a coupled GCM. Geophys. Res. Lett., 33 , L09710. doi:10.1029/2005GL024916.

    • Search Google Scholar
    • Export Citation
  • Lambert, F. H., and J. C. H. Chiang, 2007: Control of land–ocean temperature contrast by ocean heat uptake. Geophys. Res. Lett., 34 , L13704. doi:10.1029/2007GL029755.

    • Search Google Scholar
    • Export Citation
  • Lambert, F. H., and M. J. Webb, 2008: Dependency of global mean precipitation on surface temperature. Geophys. Res. Lett., 35 , L16706. doi:10.1029/2008GL034838.

    • Search Google Scholar
    • Export Citation
  • Lee, J.-Y., and Coauthors, 2010: How is the performance on mean climate related to seasonal prediction skill in coupled climate models? Climate Dyn., 35 , 267283.

    • Search Google Scholar
    • Export Citation
  • Liepert, B. G., and M. Previdi, 2009: Do models and observations disagree on the rainfall response to global warming? J. Climate, 22 , 31563166.

    • Search Google Scholar
    • Export Citation
  • Liniger, M. A., H. Mathis, C. Appenzeller, and F. J. Doblas-Reyes, 2007: Realistic greenhouse gas forcing and seasonal forecasts. Geophys. Res. Lett., 34 , L04705. doi:10.1029/2006GL028335.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1975: The physical bases of climate and climate modelling. Climate Predictability, GARP Publication Series, Vol. 16, WMO, 132–136.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., and T. Yamagata, 2001: Long-term El Niño–Southern Oscillation (ENSO)-like variation with special emphasis on the South Pacific. J. Geophys. Res., 106 , 2221122227.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., S. Masson, S. Behera, P. Delecluse, S. Gualdi, A. Navarra, and T. Yamagata, 2003: South Pacific origin of the decadal ENSO-like variation as simulated by a coupled GCM. Geophys. Res. Lett., 30 , 2250. doi:10.1029/2003GL018649.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., S. Masson, E. Roeckner, G. Madec, and T. Yamagata, 2005a: Reducing climatology bias in an ocean–atmosphere CGCM with improved coupling physics. J. Climate, 18 , 23442360.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., S. Masson, S. Behera, S. Shingu, and T. Yamagata, 2005b: Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecasts. J. Climate, 18 , 44744497.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., S. Masson, S. Behera, and T. Yamagata, 2007: Experimental forecasts of the Indian Ocean dipole using a coupled OAGCM. J. Climate, 20 , 21782190.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., S. Behera, Y. Masumoto, H. Sakuma, and T. Yamagata, 2008a: Successful prediction of the consecutive IOD in 2006 and 2007. Geophys. Res. Lett., 35 , L14S02. doi:10.1029/2007GL032793.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., S. Masson, S. Behera, and T. Yamagata, 2008b: Extended ENSO predictions using a fully coupled ocean–atmosphere model. J. Climate, 21 , 8493.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., R. Zhang, S. Behera, Y. Masumoto, F.-F. Jin, R. Lukas, and T. Yamagata, 2010: Interaction between El Niño and extreme Indian Ocean dipole. J. Climate, 23 , 726742.

    • Search Google Scholar
    • Export Citation
  • Madec, G., P. Delecluse, M. Imbard, and C. Levy, 1998: OPA 8.1 ocean general circulation model reference manual. LODYC/IPSL Tech. Rep. Note 11, 91 pp.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and Coauthors, 2001: North Atlantic climate variability: Phenomena, impacts and mechanisms. Int. J. Climatol., 21 , 18631898.

    • Search Google Scholar
    • Export Citation
  • Masson, S., and Coauthors, 2005: Impact of barrier layer on winter-spring variability of the southeastern Arabian Sea. Geophys. Res. Lett., 32 , L07703. doi:10.1029/2004GL021980.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, K. Matthes, F. Sassi, and H. van Loon, 2009: Amplifying the Pacific climate system response to a small 11 year solar cycle forcing. Science, 325 , 11141118.

    • Search Google Scholar
    • Export Citation
  • Navarra, A., and Coauthors, 2008: Atmospheric horizontal resolution affects tropical climate variability in coupled models. J. Climate, 21 , 730750.

    • Search Google Scholar
    • Export Citation
  • Onogi, K., and Coauthors, 2007: The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85 , 369432.

  • Palmer, T. N., and Coauthors, 2004: Development of a European multimodel ensemble system for seasonal-to-interannual prediction (DEMETER). Bull. Amer. Meteor. Soc., 85 , 853872.

    • Search Google Scholar
    • Export Citation
  • Rao, S. A., S. Masson, J.-J. Luo, S. K. Behera, and T. Yamagata, 2007: Termination of Indian Ocean dipole events in a coupled general circulation model. J. Climate, 20 , 30183035.

    • Search Google Scholar
    • Export Citation
  • Rao, S. A., J.-J. Luo, S. K. Behera, and T. Yamagata, 2009: Generation and termination of Indian Ocean dipole events in 2003, 2006 and 2007. Climate Dyn., 33 , 751767.

    • Search Google Scholar
    • Export Citation
  • Rashid, H., S. B. Power, and J. R. Knight, 2010: Impact of multidecadal fluctuations in the Atlantic thermohaline circulation on Indo-Pacific climate variability in a coupled GCM. J. Climate, 23 , 40384044.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15 , 16091625.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 1996: The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Max-Planck-Institut für Meteorologie Rep. 218, 90 pp.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., S. Cusack, A. W. Colman, C. K. Folland, G. R. Harris, and J. M. Murphy, 2007: Improved surface temperature prediction for the coming decade from a global climate model. Science, 317 , 796799.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller Jr., and Z. Chen, Eds. 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Sutton, R., B. Dong, and J. M. Gregory, 2007: Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations. Geophys. Res. Lett., 34 , L02701. doi:10.1029/2006GL028164.

    • Search Google Scholar
    • Export Citation
  • Tozuka, T., J.-J. Luo, S. Masson, S. Behera, and T. Yamagata, 2005: Annual ENSO simulated in a coupled ocean–atmosphere model. Dyn. Atmos. Oceans, 39 , 4160.

    • Search Google Scholar
    • Export Citation
  • Tozuka, T., J.-J. Luo, S. Masson, and T. Yamagata, 2007: Decadal modulations of the Indian Ocean dipole in the SINTEX-F1 coupled GCM. J. Climate, 20 , 28812894.

    • Search Google Scholar
    • Export Citation
  • Tozuka, T., J.-J. Luo, S. Masson, and T. Yamagata, 2008: Tropical Indian Ocean variability revealed by self-organizing maps. Climate Dyn., 31 , 333343.

    • Search Google Scholar
    • Export Citation
  • Troccoli, A., and T. N. Palmer, 2007: Ensemble decadal predictions from analysed initial conditions. Philos. Trans. Roy. Soc., A365 , 21792191.

    • Search Google Scholar
    • Export Citation
  • Valcke, S., L. Terray, and A. Piacentini, 2000: The OASIS coupler user guide version 2.4. CERFACE Tech. Rep. TR/CGMC/00-10, 85 pp.

  • Wang, B., and Coauthors, 2008: How accurately do coupled climate models predict the Asian-Australia monsoon interannual variability? Climate Dyn., 31 , 605619.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and Coauthors, 2009: Advance and prospectus of seasonal prediction: Assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980–2004). Climate Dyn., 33 , 93117.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., L. Ricciardulli, K. Hilburn, and C. Mears, 2007: How much more rain will global warming bring? Science, 317 , 233235.

  • Yamagata, T., S. Behera, J.-J. Luo, S. Masson, M. Jury, and S. A. Rao, 2004: Coupled ocean–atmosphere variability in the tropical Indian Ocean. Earth’s Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 189–212.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., T. L. Delworth, and I. M. Held, 2007: Can the Atlantic Ocean drive the observed multidecadal variability in Northern Hemisphere mean temperature? Geophys. Res. Lett., 34 , L02709. doi:10.1029/2006GL028683.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., F. W. Zwiers, G. C. Hegerl, F. H. Lambert, N. P. Gillett, S. Solomon, P. A. Stott, and T. Nozawa, 2007: Detection of human influence on twentieth-century precipitation trends. Nature, 448 , 461465.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–92. J. Climate, 10 , 10041020.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1236 535 20
PDF Downloads 357 94 7