Interactions of ENSO, the IOD, and the SAM in CMIP3 Models

Wenju Cai CSIRO Marine and Atmospheric Research, Aspendale, Victoria, Australia

Search for other papers by Wenju Cai in
Current site
Google Scholar
PubMed
Close
,
Arnold Sullivan CSIRO Marine and Atmospheric Research, Aspendale, Victoria, Australia

Search for other papers by Arnold Sullivan in
Current site
Google Scholar
PubMed
Close
, and
Tim Cowan CSIRO Marine and Atmospheric Research, Aspendale, Victoria, Australia

Search for other papers by Tim Cowan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Simulations of individual global climate drivers using models from the Coupled Model Intercomparison Project phase 3(CMIP3) have been examined; however, the relationship among them has not been assessed. This is carried out to address several important issues, including the likelihood of the southern annular mode (SAM) forcing Indian Ocean dipole (IOD) events and the possible impact of the IOD on El Niño–Southern Oscillation (ENSO) events. Several conclusions emerge from statistics based on multimodel outputs. First, ENSO signals project strongly onto the SAM, although ENSO-forced signals tend to peak before ENSO. This feature is similar to the situation associated with the IOD. The IOD-induced signal over southern Australia, through stationary equivalent Rossby barotropic wave trains, peak before the IOD itself. Second, there is no control by the SAM on the IOD, in contrast to what has been suggested previously. Indeed, no model produces a SAM–IOD relationship that supports a positive (negative) SAM driving a positive (negative) IOD event. This is the case even in models that do not simulate a statistically significant relationship between ENSO and the IOD. Third, the IOD does have an impact on ENSO. The relationship between ENSO and the IOD in the majority of models is far weaker than the observed. However, the ENSO’s influence on the IOD is boosted by a spurious oceanic teleconnection, whereby ENSO discharge–recharge signals transmit to the Sumatra–Java coast, generating thermocline anomalies and changing IOD properties. Without the spurious oceanic teleconnection, the influence of the IOD on ENSO is comparable to the impact of ENSO on the IOD. Other model deficiencies are discussed.

Corresponding author address: Wenju Cai, CSIRO Marine and Atmospheric Research, PMB 1, Aspendale VIC 3195, Australia. Email: wenju.cai@csiro.au

Abstract

Simulations of individual global climate drivers using models from the Coupled Model Intercomparison Project phase 3(CMIP3) have been examined; however, the relationship among them has not been assessed. This is carried out to address several important issues, including the likelihood of the southern annular mode (SAM) forcing Indian Ocean dipole (IOD) events and the possible impact of the IOD on El Niño–Southern Oscillation (ENSO) events. Several conclusions emerge from statistics based on multimodel outputs. First, ENSO signals project strongly onto the SAM, although ENSO-forced signals tend to peak before ENSO. This feature is similar to the situation associated with the IOD. The IOD-induced signal over southern Australia, through stationary equivalent Rossby barotropic wave trains, peak before the IOD itself. Second, there is no control by the SAM on the IOD, in contrast to what has been suggested previously. Indeed, no model produces a SAM–IOD relationship that supports a positive (negative) SAM driving a positive (negative) IOD event. This is the case even in models that do not simulate a statistically significant relationship between ENSO and the IOD. Third, the IOD does have an impact on ENSO. The relationship between ENSO and the IOD in the majority of models is far weaker than the observed. However, the ENSO’s influence on the IOD is boosted by a spurious oceanic teleconnection, whereby ENSO discharge–recharge signals transmit to the Sumatra–Java coast, generating thermocline anomalies and changing IOD properties. Without the spurious oceanic teleconnection, the influence of the IOD on ENSO is comparable to the impact of ENSO on the IOD. Other model deficiencies are discussed.

Corresponding author address: Wenju Cai, CSIRO Marine and Atmospheric Research, PMB 1, Aspendale VIC 3195, Australia. Email: wenju.cai@csiro.au

Save
  • AchutaRao, K., and K. Sperber, 2002: Simulation of the El Niño Southern Oscillation: Results from the Coupled Model Intercomparison Project. Climate Dyn., 19 , 191209.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15 , 22052231.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., S. P. Xie, J. P. McCreary, and R. Murtugudde, 2005: Impact of Indian Ocean sea surface temperature on developing El Niño. J. Climate, 18 , 302319.

    • Search Google Scholar
    • Export Citation
  • Behera, S. K., J. J. Luo, S. Masson, S. A. Rao, H. Sakuma, and T. Yamagata, 2006: A CGCM study on the interaction between IOD and ENSO. J. Climate, 19 , 16881705.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and P. G. Baines, 2001: Forcing of the Antarctic circumpolar wave by El Niño-Southern Oscillation teleconnections. J. Geophys. Res., 106 , 90199038.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and T. Cowan, 2007: Trends in Southern Hemisphere circulation in IPCC AR4 models over 1950–99: Ozone depletion versus greenhouse forcing. J. Climate, 20 , 681693.

    • Search Google Scholar
    • Export Citation
  • Cai, W., H. H. Hendon, and G. Meyers, 2005: Indian Ocean dipolelike variability in the CSIRO Mark 3 coupled climate model. J. Climate, 18 , 14491468.

    • Search Google Scholar
    • Export Citation
  • Cai, W., A. Sullivan, and T. Cowan, 2009a: Climate change contributes to more frequent consecutive positive Indian Ocean dipole events. Geophys. Res. Lett., 36 , L23704. doi:10.1029/2009GL040163.

    • Search Google Scholar
    • Export Citation
  • Cai, W., A. Sullivan, and T. Cowan, 2009b: How rare are the 2006–2008 positive Indian Ocean dipole events? An IPCC AR4 climate model perspective. Geophys. Res. Lett., 36 , L08702. doi:10.1029/2009GL037982.

    • Search Google Scholar
    • Export Citation
  • Cai, W., A. Sullivan, and T. Cowan, 2009c: Rainfall teleconnections with Indo-Pacific variability in the WCRP CMIP3 models. J. Climate, 22 , 50465071.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., and X. Liu, 1994: Interannual sea level in the northern and eastern Indian Ocean. J. Phys. Oceanogr., 24 , 12241235.

  • Godfrey, J., 1975: On ocean spindown I: A linear experiment. J. Phys. Oceanogr., 5 , 399409.

  • Guilyardi, E., 2006: El Niño-mean state-seasonal cycle interactions in a multi-model ensemble. Climate Dyn., 26 , 329348.

  • Guilyardi, E., A. Wittenberg, A. Fedorov, M. Collins, C. Wang, A. Capotondi, G. J. van Oldenborgh, and T. Stockdale, 2009: Understanding El Niño in ocean–atmosphere general circulation models: Progress and challenges. Bull. Amer. Meteor. Soc., 90 , 325340.

    • Search Google Scholar
    • Export Citation
  • Hendon, H., 2003: Indonesian rainfall variability: Impacts of ENSO and local air–sea interaction. J. Climate, 16 , 17751790.

  • Hobbs, W. R., and M. N. Raphael, 2007: A representative time-series for the Southern Hemisphere zonal wave 1. Geophys. Res. Lett., 34 , L05702. doi:10.1029/2006GL028740.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38 , 11791196.

    • Search Google Scholar
    • Export Citation
  • Hughes, C. W., P. L. Woodworth, M. P. Meredith, V. Stepanov, T. Whitworth, and A. R. Pyne, 2003: Coherence of Antarctic sea levels, Southern Hemisphere annular mode, and flow through Drake Passage. Geophys. Res. Lett., 30 , 1464. doi:10.1029/2003GL017240.

    • Search Google Scholar
    • Export Citation
  • Ivchenko, V. O., V. B. Zalesny, and M. R. Drinkwater, 2004: Can equatorial ocean quickly respond to Antarctic sea ice/salinity anomalies? Geophys. Res. Lett., 31 , L15310. doi:10.1029/2004GL020472.

    • Search Google Scholar
    • Export Citation
  • Ivchenko, V. O., V. B. Zalesny, M. R. Drinkwater, and J. Schröter, 2006: A quick response of the equatorial ocean to Antarctic sea ice/salinity anomalies. J. Geophys. Res., 111 , C10018. doi:10.1029/2005JC003061.

    • Search Google Scholar
    • Export Citation
  • Izumo, T., and Coauthors, 2010: Influence of the state of the Indian Ocean dipole on the following year’s El Niño. Nat. Geosci., 3 , 168172. doi:10.1038/ngeo760.

    • Search Google Scholar
    • Export Citation
  • Jin, D., and B. P. Kirtman, 2009: Why the Southern Hemisphere ENSO responses lead ENSO. J. Geophys. Res., 114 , D23101. doi:10.1029/2009JD012657.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54 , 811829.

  • Joseph, R., and S. Nigam, 2006: ENSO evolution and teleconnections in IPCC’s twentieth-century climate simulations: Realistic representation? J. Climate, 19 , 43604377.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Karoly, D. J., 1989: Southern Hemisphere circulation features associated with El Niño–Southern Oscillation events. J. Climate, 2 , 12391252.

    • Search Google Scholar
    • Export Citation
  • Kidson, J. W., and J. A. Renwick, 2002: The Southern Hemisphere evolution of ENSO during 1981–99. J. Climate, 15 , 847863.

  • Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12 , 917932.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., and I.-S. Kang, 2006: Interactive feedback between ENSO and the Indian Ocean. J. Climate, 19 , 17841801.

  • Lau, N.-C., and M. J. Nath, 2004: Coupled GCM simulation of atmosphere–ocean variability associated with zonally asymmetric SST changes in the tropical Indian Ocean. J. Climate, 17 , 245265.

    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., and D. W. Thompson, 2006: Observed relationships between the El Niño–Southern Oscillation and the extratropical zonal-mean circulation. J. Climate, 19 , 276287.

    • Search Google Scholar
    • Export Citation
  • Li, T., B. Wang, C.-P. Chang, and Y. Zhang, 2003: A theory for the Indian Ocean dipole–zonal mode. J. Atmos. Sci., 60 , 21192135.

  • Luo, J.-J., S. Masson, S. K. Behera, and T. Yamagata, 2008: Extended ENSO predictions using a fully coupled ocean–atmosphere model. J. Climate, 21 , 8493.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., R. Zhang, S. K. Behera, Y. Masumoto, F.-F. Jin, R. Lukas, and T. Yamagata, 2010: Interaction between El Niño and extreme Indian Ocean dipole. J. Climate, 23 , 726742.

    • Search Google Scholar
    • Export Citation
  • Marshall, G., 2003: Trends in the southern annular mode from observations and reanalyses. J. Climate, 16 , 41344143.

  • Meinen, C. S., and M. J. McPhaden, 2000: Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J. Climate, 13 , 35513559.

    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., P. L. Woodworth, C. W. Hughes, and V. Stepanov, 2004: Changes in the ocean transport through Drake Passage during the 1980s and 1990s, forced by changes in the southern annular mode. Geophys. Res. Lett., 31 , L21305. doi:10.1029/2004GL021169.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G., 1990: El Niño, La Niña, and the Southern Oscillation. Academic Press, 289 pp.

  • Potemra, J. T., 2001: Contribution of equatorial Pacific winds to southern tropical Indian Ocean Rossby waves. J. Geophys. Res., 106 , 24072422.

    • Search Google Scholar
    • Export Citation
  • Raphael, M. N., and M. M. Holland, 2006: Twentieth century simulation of the Southern Hemisphere climate in coupled models. Part 1: Large scale circulation variability. Climate Dyn., 26 , 217228.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108 , 4407. doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., and T. Yamagata, 2003a: Possible impacts of Indian Ocean dipole mode events on global climate. Climate Res., 25 , 151169.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., and T. Yamagata, 2003b: Structure of SST and surface wind variability during Indian Ocean dipole mode years: COADS observations. J. Climate, 16 , 27352751.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401 , 360363.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., S. P. Xie, and T. Yamagata, 2006: Tropical Indian Ocean variability in the IPCC twentieth-century climate simulations. J. Climate, 19 , 43974417.

    • Search Google Scholar
    • Export Citation
  • Shi, G., J. Ribbe, W. Cai, and T. Cowan, 2007: Multidecadal variability in the transmission of ENSO signals to the Indian Ocean. Geophys. Res. Lett., 34 , L09706. doi:10.1029/2007GL029528.

    • Search Google Scholar
    • Export Citation
  • Shi, G., W. Cai, T. Cowan, J. Ribbe, L. Rotstayn, and M. Dix, 2008: Variability and trend of North West Australia rainfall: Observations and coupled climate modeling. J. Climate, 21 , 29382959.

    • Search Google Scholar
    • Export Citation
  • Vivier, F., K. A. Kelly, and M. Harismendy, 2005: Causes of large-scale sea level variations in the Southern Ocean: Analyses of sea level and a barotropic model. J. Geophys. Res., 110 , C09014. doi:10.1029/2004JC002773.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. W. J. Thompson, 2002: The Pacific center of action of the Northern Hemisphere annular mode: Real or artifact? J. Climate, 15 , 19871991.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., A. M. Moore, J. P. Loschnigg, and R. R. Leben, 1999: Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401 , 356360.

    • Search Google Scholar
    • Export Citation
  • Wijffels, S., and G. A. Meyers, 2004: An intersection of oceanic wave guides: Variability in the Indonesian Throughflow region. J. Phys. Oceanogr., 34 , 12321253.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., 2009: Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett., 36 , L12702. doi:10.1029/2009GL038710.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., H. Annamalai, F. A. Schott, and J. P. McCreary Jr., 2002: Structure and mechanisms of south Indian Ocean climate variability. J. Climate, 15 , 864878.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo–Western Pacific climate during the summer following El Niño. J. Climate, 22 , 730747.

    • Search Google Scholar
    • Export Citation
  • Yulaeva, E., and J. M. Wallace, 1994: The signature of ENSO in global temperature and precipitation fields derived from the Microwave Sounding Unit. J. Climate, 7 , 17191736.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1464 413 31
PDF Downloads 1160 276 30