Thick Anvils as Viewed by the TRMM Precipitation Radar

Wei Li Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Wei Li in
Current site
Google Scholar
PubMed
Close
and
Courtney Schumacher Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Courtney Schumacher in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study investigates anvils from thick, nonprecipitating clouds associated with deep convection as observed in the tropics by the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) during the 10-yr period, 1998–2007. Anvils observable by the PR occur, on average, 5 out of every 100 days within grid boxes with 2.5° resolution and with a conditional areal coverage of 1.5%. Unconditional areal coverage is only a few tenths of a percent. Anvils also had an average 17-dBZ echo top of ∼8.5 km and an average thickness of ∼2.7 km. Anvils were usually higher and thicker over land compared to ocean, and occurred most frequently over Africa, the Maritime Continent, and Panama. Anvil properties were intimately tied to the properties of the parent convection. In particular, anvil area and echo-top heights were highly correlated to convective rain area. The next best predictor for anvil areal coverage and echo tops was convective echo tops, while convective reflectivities had the weakest correlation. Strong upper-level wind shear also may be associated with anvil occurrence over land, especially when convection regularly attains echo-top heights greater than 7 km. Some tropical land regions, especially those affected by monsoon circulations, experience significant seasonal variability in anvil properties—strong interannual anvil variability occurs over the central Pacific because of the El Niño–Southern Oscillation. Compared to the CloudSat Cloud Profiling Radar, the TRMM PR underestimates anvil-top height by an average of ∼5 km and underestimates their horizontal extent by an average factor of 4.

Corresponding author address: Dr. Wei Li, Department of Meteorology, The Pennsylvania State University, University Park, PA 16802. Email: weili@psu.edu

Abstract

This study investigates anvils from thick, nonprecipitating clouds associated with deep convection as observed in the tropics by the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) during the 10-yr period, 1998–2007. Anvils observable by the PR occur, on average, 5 out of every 100 days within grid boxes with 2.5° resolution and with a conditional areal coverage of 1.5%. Unconditional areal coverage is only a few tenths of a percent. Anvils also had an average 17-dBZ echo top of ∼8.5 km and an average thickness of ∼2.7 km. Anvils were usually higher and thicker over land compared to ocean, and occurred most frequently over Africa, the Maritime Continent, and Panama. Anvil properties were intimately tied to the properties of the parent convection. In particular, anvil area and echo-top heights were highly correlated to convective rain area. The next best predictor for anvil areal coverage and echo tops was convective echo tops, while convective reflectivities had the weakest correlation. Strong upper-level wind shear also may be associated with anvil occurrence over land, especially when convection regularly attains echo-top heights greater than 7 km. Some tropical land regions, especially those affected by monsoon circulations, experience significant seasonal variability in anvil properties—strong interannual anvil variability occurs over the central Pacific because of the El Niño–Southern Oscillation. Compared to the CloudSat Cloud Profiling Radar, the TRMM PR underestimates anvil-top height by an average of ∼5 km and underestimates their horizontal extent by an average factor of 4.

Corresponding author address: Dr. Wei Li, Department of Meteorology, The Pennsylvania State University, University Park, PA 16802. Email: weili@psu.edu

Save
  • Ackerman, T. P., K.-N. Liou, F. P. J. Valero, and L. Pfister, 1988: Heating rates in tropical anvils. J. Atmos. Sci., 45 , 16061623.

  • Alcala, C. M., and A. E. Dessler, 2002: Observations of deep convection in the tropics using the Tropical Rainfall Measuring Mission (TRMM) precipitation radar. J. Geophys. Res., 107 , 4792. doi:10.1029/2002JD002457.

    • Search Google Scholar
    • Export Citation
  • Awaka, J., T. Iguchi, H. Kumagai, and K. Okamoto, 1997: Rain type classification algorithm for TRMM precipitation radar. Proc. Int. Geoscience and Remote Sensing Symp., Suntec City, Singapore, IEEE, 1633–1635.

    • Search Google Scholar
    • Export Citation
  • Burpee, R. W., 1972: The origin and structure of easterly waves in the lower troposphere of North Africa. J. Atmos. Sci., 29 , 7790.

  • Casey, S. P. F., A. E. Dessler, and C. Schumacher, 2007: Frequency of tropical precipitating clouds as observed by the Tropical Rainfall Measuring Mission Precipitation Radar and ICESat/Geoscience Laser Altimeter System. J. Geophys. Res., 112 , D14215. doi:10.1029/2007JD008468.

    • Search Google Scholar
    • Export Citation
  • Cetrone, J., and R. A. Houze Jr., 2009: Anvil clouds of tropical mesoscale convective systems in monsoon regions: Satellite radar climatology. Quart. J. Roy. Meteor. Soc., 135 , 305317.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., R. A. Houze Jr., and B. E. Mapes, 1996: Multiscale variability of deep convection in relation to large-scale circulation in TOGA COARE. J. Atmos. Sci., 53 , 13801409.

    • Search Google Scholar
    • Export Citation
  • Clement, A. C., and B. Soden, 2005: The sensitivity of the tropical-mean radiation budget. J. Climate, 18 , 31893203.

  • Colman, R., 2003: A comparison of climate feedbacks in general circulation models. Climate Dyn., 20 , 865873.

  • Cook, K. H., 1999: Generation of the African easterly jet and its role in determining West African precipitation. J. Climate, 12 , 11651184.

    • Search Google Scholar
    • Export Citation
  • Fortune, M., 1980: Properties of African squall lines inferred from time-lapse satellite imagery. Mon. Wea. Rev., 108 , 153168.

  • Frederick, K., and C. Schumacher, 2008: Anvil characteristics as seen by C-POL during the Tropical Warm Pool International Cloud Experiment (TWP-ICE). Mon. Wea. Rev., 136 , 206222.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., H. H. Hendon, and R. A. Houze Jr., 1984: Some implications of the mesoscale circulations in tropical cloud clusters for large-scale dynamics and climate. J. Atmos. Sci., 41 , 113121.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., and C. D. Thorncroft, 1997: Distribution and statistics of African mesoscale convective weather systems based on the ISCCP Meteosat imagery. Mon. Wea. Rev., 125 , 28212837.

    • Search Google Scholar
    • Export Citation
  • Houze Jr., R. A., 1982: Cloud clusters and large-scale vertical motions in the tropics. J. Meteor. Soc. Japan, 60 , 396410.

  • Houze Jr., R. A., 1993: Cloud Dynamics. International Geophysics Series, Vol. 53, Academic Press, 573 pp.

  • Houze Jr., R. A., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78 , 21792196.

    • Search Google Scholar
    • Export Citation
  • Kozu, T., and Coauthors, 2001: Development of precipitation radar onboard the Tropical Rainfall Measuring Mission (TRMM) satellite. IEEE Trans. Geosci. Remote Sens., 39 , 102116.

    • Search Google Scholar
    • Export Citation
  • Krueger, S. K., Q. Fu, K. N. Liou, and H.-N. S. Chin, 1995: Improvements of an ice-phase microphysics parameterization for use in numerical simulations of tropical convection. J. Appl. Meteor., 34 , 281287.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15 , 809817.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., M. D. Chou, and A. Y. Hou, 2001: Does the Earth have an adaptative infrared iris? Bull. Amer. Meteor. Soc., 82 , 417432.

    • Search Google Scholar
    • Export Citation
  • Lopez, M. A., D. L. Hartmann, P. N. Blossey, R. Wood, C. S. Bretherton, and T. L. Kubar, 2009: A test of the simulation of tropical convective cloudiness by a cloud-resolving model. J. Climate, 22 , 28342849.

    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., and W. B. Rossow, 1993: Structural characteristics and radiative properties of tropical cloud clusters. Mon. Wea. Rev., 121 , 32343260.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., E. J. Zipser, and D. J. Cecil, 2000: A census of precipitation features in the tropics using TRMM: Radar, ice scattering, and lightning observations. J. Climate, 13 , 40874106.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., and S. A. Rutledge, 2001: Regional variability in tropical convection: Observations from TRMM. J. Climate, 14 , 35663586.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., Harshvardhan, D. A. Dazlich, and T. G. Corsetti, 1989: Interactions among radiation, convection, and large-scale dynamics in a general circulation model. J. Atmos. Sci., 46 , 19431970.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. M., and J. M. Wallace, 1983: Meteorological aspects of the El Niño/Southern Oscillation. Science, 222 , 11951202.

  • Rickenbach, T., P. Kucera, M. Gentry, L. Carey, A. Lare, R.-F. Lin, B. Demoz, and D. O. Starr, 2008: The relationship between anvil clouds and convective cells: A case study in south Florida during CRYSTAL-FACE. Mon. Wea. Rev., 136 , 39173932.

    • Search Google Scholar
    • Export Citation
  • Riley, E. M., and B. E. Mapes, 2009: Unexpected peak near −15°C in CloudSat echo top climatology. Geophys. Res. Lett., 36 , L09819. doi:10.1029/2009GL037558.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze Jr., 2003: Stratiform rain in the tropics as seen by the TRMM Precipitation Radar. J. Climate, 16 , 17391756.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze Jr., 2006: Stratiform precipitation production over sub-Saharan Africa and the tropical east Atlantic as observed by TRMM. Quart. J. Roy. Meteor. Soc., 132 , 22352255.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., R. A. Houze Jr., and I. Kraucunas, 2004: The tropical dynamical response to latent heating estimates derived from the TRMM precipitation radar. J. Atmos. Sci., 61 , 13411358.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., V. Ramanathan, T. P. Barnett, M. K. Tyree, and E. Roeckner, 1994: Response of an atmospheric general circulation model to radiative forcing of tropical clouds. J. Geophys. Res., 99 , 2082920846.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., and A. Slingo, 1991: The response of a general circulation model to cloud longwave radiative forcing. II: Further studies. Quart. J. Roy. Meteor. Soc., 117 , 333364.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., S. E. Yuter, C. S. Bretherton, and G. N. Kiladis, 2004: Large-scale meteorology and deep convection during TRMM KWAJEX. Mon. Wea. Rev., 132 , 422444.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 2005: Cloud feedbacks in the climate system: A critical review. J. Climate, 18 , 237273.

  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83 , 17711790.

    • Search Google Scholar
    • Export Citation
  • Theisen, C. J., P. A. Kucera, and M. R. Poellot, 2009: A study of relationships between Florida thunderstorm properties and corresponding anvil cloud characteristics. J. Appl. Meteor., 48 , 18821901.

    • Search Google Scholar
    • Export Citation
  • TRMM Precipitation Radar Team, 2005: Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar Algorithm instruction manual for version 6. Japan Aerospace Exploration Agency and NASA Rep., 180 pp. [Available online at http://www.eorc.jaxa.jp/TRMM/document/pr_manual/pr_manual_v6.pdf].

    • Search Google Scholar
    • Export Citation
  • Vera, C., and Coauthors, 2006: Toward a unified view of the American monsoon systems. J. Climate, 19 , 49775000.

  • Webster, P. J., 1983: Large-scale structure of the tropical atmosphere. Large-Scale Dynamical Processes in the Atmosphere, B. J. Hoskins and R. P. Pearce, Eds., Academic Press, 235–275.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and G. L. Stephens, 1980: Tropical upper-tropospheric extended clouds: Inferences from Winter MONEX. J. Atmos. Sci., 37 , 15211541.

    • Search Google Scholar
    • Export Citation
  • Yao, M.-S., and A. D. Del Genio, 1999: Effects of cloud parameterization on the simulation of climate changes in the GISS GCM. J. Climate, 12 , 761779.

    • Search Google Scholar
    • Export Citation
  • Yuan, J., and R. A. Houze Jr., 2010: Global variability of mesoscale convective system anvil structure from A-Train satellite data. J. Climate, 23 , 58645888.

    • Search Google Scholar
    • Export Citation
  • Zender, C. S., and J. T. Kiehl, 1997: Sensitivity of climate simulations to radiative effects of tropical anvil structure. J. Geophys. Res., 102 , 2379323803.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., D. J. Cecil, C. Liu, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on earth? Bull. Amer. Meteor. Soc., 87 , 10571071.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 277 88 2
PDF Downloads 161 45 1