Separating the Dynamical Effects of Climate Change and Ozone Depletion. Part II: Southern Hemisphere Troposphere

Charles McLandress Department of Physics, University of Toronto, Toronto, Ontario, Canada

Search for other papers by Charles McLandress in
Current site
Google Scholar
PubMed
Close
,
Theodore G. Shepherd Department of Physics, University of Toronto, Toronto, Ontario, Canada

Search for other papers by Theodore G. Shepherd in
Current site
Google Scholar
PubMed
Close
,
John F. Scinocca Canadian Centre for Climate Modelling and Analysis, Victoria, British Columbia, Canada

Search for other papers by John F. Scinocca in
Current site
Google Scholar
PubMed
Close
,
David A. Plummer Canadian Centre for Climate Modelling and Analysis, Victoria, British Columbia, Canada

Search for other papers by David A. Plummer in
Current site
Google Scholar
PubMed
Close
,
Michael Sigmond Department of Physics, University of Toronto, Toronto, Ontario, Canada

Search for other papers by Michael Sigmond in
Current site
Google Scholar
PubMed
Close
,
Andreas I. Jonsson Department of Physics, University of Toronto, Toronto, Ontario, Canada

Search for other papers by Andreas I. Jonsson in
Current site
Google Scholar
PubMed
Close
, and
M. Catherine Reader University of Victoria, Victoria, British Columbia, Canada

Search for other papers by M. Catherine Reader in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The separate effects of ozone depleting substances (ODSs) and greenhouse gases (GHGs) on forcing circulation changes in the Southern Hemisphere extratropical troposphere are investigated using a version of the Canadian Middle Atmosphere Model (CMAM) that is coupled to an ocean. Circulation-related diagnostics include zonal wind, tropopause pressure, Hadley cell width, jet location, annular mode index, precipitation, wave drag, and eddy fluxes of momentum and heat. As expected, the tropospheric response to the ODS forcing occurs primarily in austral summer, with past (1960–99) and future (2000–99) trends of opposite sign, while the GHG forcing produces more seasonally uniform trends with the same sign in the past and future. In summer the ODS forcing dominates past trends in all diagnostics, while the two forcings contribute nearly equally but oppositely to future trends. The ODS forcing produces a past surface temperature response consisting of cooling over eastern Antarctica, and is the dominant driver of past summertime surface temperature changes when the model is constrained by observed sea surface temperatures. For all diagnostics, the response to the ODS and GHG forcings is additive; that is, the linear trend computed from the simulations using the combined forcings equals (within statistical uncertainty) the sum of the linear trends from the simulations using the two separate forcings. Space–time spectra of eddy fluxes and the spatial distribution of transient wave drag are examined to assess the viability of several recently proposed mechanisms for the observed poleward shift in the tropospheric jet.

Corresponding author address: Charles McLandress, Dept. of Physics, University of Toronto, 60 St. George St., Toronto, ON M5S 1A7, Canada. Email: charles@atmosp.physics.utoronto.ca

Abstract

The separate effects of ozone depleting substances (ODSs) and greenhouse gases (GHGs) on forcing circulation changes in the Southern Hemisphere extratropical troposphere are investigated using a version of the Canadian Middle Atmosphere Model (CMAM) that is coupled to an ocean. Circulation-related diagnostics include zonal wind, tropopause pressure, Hadley cell width, jet location, annular mode index, precipitation, wave drag, and eddy fluxes of momentum and heat. As expected, the tropospheric response to the ODS forcing occurs primarily in austral summer, with past (1960–99) and future (2000–99) trends of opposite sign, while the GHG forcing produces more seasonally uniform trends with the same sign in the past and future. In summer the ODS forcing dominates past trends in all diagnostics, while the two forcings contribute nearly equally but oppositely to future trends. The ODS forcing produces a past surface temperature response consisting of cooling over eastern Antarctica, and is the dominant driver of past summertime surface temperature changes when the model is constrained by observed sea surface temperatures. For all diagnostics, the response to the ODS and GHG forcings is additive; that is, the linear trend computed from the simulations using the combined forcings equals (within statistical uncertainty) the sum of the linear trends from the simulations using the two separate forcings. Space–time spectra of eddy fluxes and the spatial distribution of transient wave drag are examined to assess the viability of several recently proposed mechanisms for the observed poleward shift in the tropospheric jet.

Corresponding author address: Charles McLandress, Dept. of Physics, University of Toronto, 60 St. George St., Toronto, ON M5S 1A7, Canada. Email: charles@atmosp.physics.utoronto.ca

Save
  • Arblaster, J. M., and G. A. Meehl, 2006: Contributions of external forcings to southern annular mode trends. J. Climate, 19 , 28962904.

    • Search Google Scholar
    • Export Citation
  • Austin, J., and Coauthors, 2010: Chemistry-climate model simulations of spring Antarctic ozone. J. Geophys. Res., 115 , D00M11. doi:10.1029/2009JD013577.

    • Search Google Scholar
    • Export Citation
  • Chen, G., and I. M. Held, 2007: Phase speed spectra and the recent poleward shift of Southern Hemisphere surface westerlies. Geophys. Res. Lett., 34 , L21805. doi:10.1029/2007GL031200.

    • Search Google Scholar
    • Export Citation
  • de Grandpré, J., S. R. Beagley, V. I. Fomichev, E. Griffioen, J. C. McConnell, A. S. Medvedev, and T. G. Shepherd, 2000: Ozone climatology using interactive chemistry: Results from the Canadian middle atmosphere model. J. Geophys. Res., 105 , 2647526491.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2008: Overview of the new CCMVal reference and sensitivity simulations in support of upcoming ozone and climate assessments and the planned SPARC CCMVal Report. SPARC Newsletter, No. 30, Stratospheric Processes and Their Role in Climate, World Climate Research Programme, 20–26.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., C. M. Johanson, J. M. Wallace, and T. Reichler, 2006: Enhanced mid-latitude tropospheric warming in satellite measurements. Science, 312 , 1179.

    • Search Google Scholar
    • Export Citation
  • Fyfe, J., G. Boer, and G. Flato, 1999: The Arctic and Antarctic oscillations and their projected changes under global warming. Geophys. Res. Lett., 26 , 16011604.

    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., and Coauthors, 2010: Stratosphere–troposphere coupling and annular mode variability in chemistry-climate models. J. Geophys. Res., 115 , D00M06. doi:10.1029/2009JD013770.

    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., and D. W. J. Thompson, 2003: Simulation of recent Southern Hemisphere climate change. Science, 302 , 273275.

  • Gong, D., and S. Wang, 1999: Definition of Antarctic oscillation index. Geophys. Res. Lett., 26 , 459462.

  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, Eds. 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kushner, P. J., and L. M. Polvani, 2004: Stratosphere–troposphere coupling in a relatively simple AGCM: The role of eddies. J. Climate, 17 , 629639.

    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., I. M. Held, and T. L. Delworth, 2001: Southern Hemisphere atmospheric circulation response to global warming. J. Climate, 14 , 22382249.

    • Search Google Scholar
    • Export Citation
  • Langematz, U., M. Kunze, K. Krüger, K. Labitzke, and G. L. Roff, 2003: Thermal and dynamical changes of the stratosphere since 1979 and their link to ozone and CO2 changes. J. Geophys. Res., 108 , 4027. doi:10.1029/2002JD002069.

    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., A. Orr, N. P. M. van Lipzig, and J. C. King, 2006: The impact of a changing Southern Hemisphere annular mode on Antarctic Peninsula summer temperatures. J. Climate, 19 , 53885404.

    • Search Google Scholar
    • Export Citation
  • McLandress, C., A. I. Jonsson, D. A. Plummer, M. C. Reader, J. F. Scinocca, and T. G. Shepherd, 2010: Separating the dynamical effects of climate change and ozone depletion. Part I: Southern Hemisphere stratosphere. J. Climate, 23 , 50025020.

    • Search Google Scholar
    • Export Citation
  • Perlwitz, J., S. Pawson, R. L. Fogt, J. E. Nielsen, and W. D. Neff, 2008: Impact of stratospheric ozone hole recovery on Antarctic climate. Geophys. Res. Lett., 35 , L08714. doi:10.1029/2008GL033317.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., D. W. Waugh, G. J. P. Correa, and S.-W. Son, 2011: Stratospheric ozone depletion: The main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere? J. Climate, 24 , 210227.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and I. M. Held, 1991: Phase speed spectra of transient eddy fluxes and critical layer absorption. J. Atmos. Sci., 48 , 688697.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and Coauthors, 2009: An update of observed stratospheric temperature trends. J. Geophys. Res., 114 , D02107. doi:10.1029/2008JD010421.

    • Search Google Scholar
    • Export Citation
  • Reichler, T., M. Dameris, and R. Sausen, 2003: Determining the tropopause height from gridded data. Geophys. Res. Lett., 30 , 2042. doi:10.1029/2003GL018240.

    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., N. A. McFarlane, M. Lazare, J. Li, and D. Plummer, 2008: The CCCma third generation AGCM and its extension into the middle atmosphere. Atmos. Chem. Phys., 8 , 70557074.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., and W. J. Randel, 2006: Variability and trends in the global tropopause estimated from radiosonde data. J. Geophys. Res., 111 , D21101. doi:10.1029/2006JD007363.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., 2002: Issues in stratosphere–troposphere coupling. J. Meteor. Soc. Japan, 80 , 769792.

  • Shine, K. P., and Coauthors, 2003: A comparison of model-simulated trends in stratospheric temperatures. Quart. J. Roy. Meteor. Soc., 129 , 15651588.

    • Search Google Scholar
    • Export Citation
  • Sigmond, M., and J. C. Fyfe, 2010: Has the ozone hole contributed to increased Antarctic sea ice extent? Geophys. Res. Lett., 37 , L18502. doi:10.1029/2010GL044301.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., and K. Keay, 2000: Variability of Southern Hemisphere extratropical cyclone behavior, 1958–97. J. Climate, 13 , 550561.

    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., M. Blackburn, and J. D. Haigh, 2009: The role of eddies in driving the tropospheric response to stratospheric heating perturbations. J. Atmos. Sci., 66 , 13471365.

    • Search Google Scholar
    • Export Citation
  • Son, S.-W., and Coauthors, 2008: The impact of stratospheric ozone recovery on the Southern Hemisphere westerly jet. Science, 320 , 14861489.

    • Search Google Scholar
    • Export Citation
  • Son, S.-W., N. F. Tandon, L. M. Polvani, and D. W. Waugh, 2009: Ozone hole and Southern Hemisphere climate change. Geophys. Res. Lett., 36 , L15705. doi:10.1029/2009GL038671.

    • Search Google Scholar
    • Export Citation
  • Son, S.-W., and Coauthors, 2010: The impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment. J. Geophys. Res., 115 , D00M07. doi:1029.2010JD014271.

    • Search Google Scholar
    • Export Citation
  • Song, Y., and W. A. Robinson, 2004: Dynamical mechanisms for stratospheric influences on the troposphere. J. Atmos. Sci., 61 , 17111725.

    • Search Google Scholar
    • Export Citation
  • SPARC CCMVal, 2010: SPARC report on the evaluation of chemistry-climate models. V. Eyring, T. G. Shepherd, and D. W. Waugh, Eds., SPARC Rep. 5, WCRP-132, WMO/TD-1526, 434 pp. [Available online at http://www.atmosp.physics.utoronto.ca/SPARC].

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13 , 10001016.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296 , 895899.

  • Thompson, D. W. J., J. M. Wallace, and G. C. Hegerl, 2000: Annular modes in the extratropical circulation. Part II: Trends. J. Climate, 13 , 10181036.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., J. C. Furtado, and T. G. Shepherd, 2006: On the tropospheric response to anomalous stratospheric wave drag and radiative heating. J. Atmos. Sci., 63 , 26162629.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., B. J. Hoskins, and M. E. McIntyre, 1993: Two paradigms of baroclinic-wave life-cycle behaviour. Quart. J. Roy. Meteor. Soc., 119 , 1755.

    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., W. J. Randel, S. Pawson, P. A. Newman, and E. R. Nash, 1999: Persistence of the lower stratospheric polar vortices. J. Geophys. Res., 104 , 2719127202.

    • Search Google Scholar
    • Export Citation
  • Wittman, M. A. H., A. J. Charlton, and L. M. Polvani, 2007: The effect of lower stratospheric shear on baroclinic instability. J. Atmos. Sci., 64 , 479496.

    • Search Google Scholar
    • Export Citation
  • WMO, 2007: Scientific assessment of ozone depletion: 2006. Global Ozone Research Monitoring Project Rep. 50, WMO, Geneva, Switzerland.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1150 304 20
PDF Downloads 706 168 7