• Alessandri, A., , and A. Navarra, 2008: On the coupling between vegetation and rainfall inter-annual anomalies: Possible contributions to seasonal rainfall predictability over land areas. Geophys. Res. Lett., 35, L02718, doi:10.1029/2007GL032415.

    • Search Google Scholar
    • Export Citation
  • Amthor, J. S., 1984: The role of maintenance respiration in plant growth. Plant Cell Environ, 7, 561569.

  • Ball, J. T., , I. E. Woodrow, , and J. A. Berry, 1987: A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. Progress in Photosynthesis Research, J. Biggins, Ed., Vol. IV, Martinus Nijhohf, 221–224.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 1997: Effects of land use on the climate of the United States. Climatic Change, 37, 449486.

  • Bonan, G. B., 1999: Frost followed the plow: Impacts of deforestation on the climate of the United States. Ecol. Appl., 9, 13051315.

  • Bonan, G. B., 2002: Ecological Climatology: Concepts and Applications. Cambridge University Press, 550 pp.

  • Bonan, G. B., , D. Pollard, , and S. L. Thompson, 1992: Effects of boreal forest vegetation on global climate. Nature, 359, 716718.

  • Bonan, G. B., , F. S. Chapin III, , and S. L. Thompson, 1995: Boreal forest and tundra ecosystems as components of the climate system. Climatic Change, 29, 145167.

    • Search Google Scholar
    • Export Citation
  • Botta, A., , N. Viovy, , P. Ciais, , P. Friedlingstein, , and P. Monfray, 2000: A global prognostic scheme of leaf onset using satellite data. Global Change Biol., 6, 709725.

    • Search Google Scholar
    • Export Citation
  • Bounoua, L., , R. DeFries, , G. J. Collatz, , P. Sellers, , and H. Khan, 2002: Effects of land cover conversion on surface climate. Climatic Change, 52, 2964.

    • Search Google Scholar
    • Export Citation
  • Brovkin, V., , M. Claussen, , V. Petoukhov, , and A. Ganopolski, 1998: On the stability of the atmosphere–vegetation system in Sahara/Sahel region. J. Geophys. Res., 103, 31 61331 624.

    • Search Google Scholar
    • Export Citation
  • Chapin, F. S., and Coauthors, 2005: Role of land-surface changes in Arctic summer warming. Science, 310, 657660.

  • Charney, J. G., , P. H. Stone, , and W. J. Quirk, 1975: Drought in the Sahara: A biogeophysical feedback mechanism. Science, 187, 434435.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., , W. J. Quirk, , S.-H. Chow, , and J. Kornfield, 1977: A comparative study of the effects of albedo change on drought in semi-arid regions. J. Atmos. Sci., 34, 13661385.

    • Search Google Scholar
    • Export Citation
  • Chase, T. N., , R. A. Pielke Sr., , T. G. F. Kittel, , R. R. Nemani, , and S. W. Running, 2000: Simulated impacts of historical land cover changes on global climate in northern winter. Climate Dyn., 16, 93105.

    • Search Google Scholar
    • Export Citation
  • Ciais, P., and Coauthors, 2005: Europe-wide reduction in primary productivity caused by heat and drought in 2003. Nature, 437, 529533.

    • Search Google Scholar
    • Export Citation
  • Coe, M. T., , M. H. Costa, , A. Botta, , and C. M. Birkett, 2002: Long-term simulations of discharge and floods in the Amazon basin. J. Geophys. Res., 107, 8044, doi:10.1029/2001JD000740.

    • Search Google Scholar
    • Export Citation
  • Coe, M. T., , M. H. Costa, , and B. S. Soares-Filhoc, 2009: The influence of historical and potential future deforestation on the stream flow of the Amazon River—Land surface processes and atmospheric feedbacks. J. Hydrol., 369, 165174.

    • Search Google Scholar
    • Export Citation
  • Collatz, G. J., , J. T. Ball, , C. Grivet, , and J. A. Berry, 1991: Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration—A model that includes a laminar boundary-layer. Agric. For. Meteor., 54, 107136.

    • Search Google Scholar
    • Export Citation
  • Collatz, G. J., , M. Ribas-Carbo, , and J. A. Berry, 1992: Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Aust. J. Plant Physiol., 19, 519538.

    • Search Google Scholar
    • Export Citation
  • Cook, B. I., , R. L. Miller, , and R. Seager, 2009: Amplification of the North American “Dust Bowl” drought through human induced land degradation. Proc. Natl. Acad. Sci. USA, 106, 49975001.

    • Search Google Scholar
    • Export Citation
  • Costa, M. H., , and J. A. Foley, 1997: Water balance of the Amazon Basin: Dependence on vegetation cover and canopy conductance. J. Geophys. Res., 102 (D20), 23 97323 989.

    • Search Google Scholar
    • Export Citation
  • Costa, M. H., , S. N. M. Yanagi, , P. J. O. P. Souza, , A. Ribeiro, , and E. J. P. Rocha, 2007: Climate change in Amazonia caused by soybean cropland expansion, as compared to caused by pastureland expansion. Geophys. Res. Lett., 34, L07706, doi:10.1029/2007GL029271.

    • Search Google Scholar
    • Export Citation
  • Cox, P. M., , R. A. Betts, , C. D. Jones, , S. A. Spall, , and I. J. Totterdell, 2000: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 750750.

    • Search Google Scholar
    • Export Citation
  • Crucifix, M., , R. A. Betts, , and P. M. Cox, 2005: Vegetation and climate variability: A GCM modelling study. Climate Dyn., 24, 457467.

  • DeFries, R., , M. Hansen, , and J. Townshend, 2000: Global continuous fields of vegetation characteristics: A linear mixture model applied to multiyear 8km AVHRR data. Int. J. Remote Sens., 21, 13891414.

    • Search Google Scholar
    • Export Citation
  • Delire, C., , and J. Foley, 1999: Evaluating the performance of a land surface/ecosystem model with biophysical measurements from contrasting environments. J. Geophys. Res., 104 (D14), 16 89516 909.

    • Search Google Scholar
    • Export Citation
  • Delire, C., , S. Levis, , G. Bonan, , and J. A. Foley, 2002: Comparison of the climate simulated by the CCM3 using 2 different processed based land-surface/ecological models. Climate Dyn., 19, 657669.

    • Search Google Scholar
    • Export Citation
  • Delire, C., , J. Foley, , and S. Thompson, 2003: Evaluating the carbon cycle of a coupled atmosphere–biosphere. Global Biogeochem. Cycles, 17, doi:10.1029/2002GB001870.

    • Search Google Scholar
    • Export Citation
  • Delire, C., , J. A. Foley, , and S. Thompson, 2004: Long-term internal variability in a coupled atmosphere–biosphere model. J. Climate, 17, 39473959.

    • Search Google Scholar
    • Export Citation
  • de Noblet-Ducoudré, N., , R. Claussen, , and C. Prentice, 2000: Mid Holocene greening of the Sahara: First results of the GAIM 6000 year BP experiment with two asynchronously coupled atmosphere/biome models. Climate Dyn., 16, 643659.

    • Search Google Scholar
    • Export Citation
  • de Rosnay, P., , and J. Polcher, 1998: Modelling root water uptake in a complex land surface scheme coupled to a GCM. Hydrol. Earth Syst. Sci., 2, 239255.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., , and A. Henderson-Sellers, 1988: Modelling tropical deforestation: A study of GCM land-surface parameterizations. Quart. J. Roy. Meteor. Soc., 114, 439462.

    • Search Google Scholar
    • Export Citation
  • Dorman, J. L., , and P. J. Sellers, 1989: A global climatology of albedo roughness length and stomatal resistance for atmospheric general circulation models as represented by the Simple Biosphere Model (SiB). J. Appl. Meteor., 28, 833855.

    • Search Google Scholar
    • Export Citation
  • Douville, H., , and J.-F. Royer, 1997: Influence of the temperate and boreal forests on the Northern Hemisphere climate in the Météo-France climate model. Climate Dyn., 13, 5774.

    • Search Google Scholar
    • Export Citation
  • Ducoudré, N. I., , K. Laval, , and A. Perrier, 1993: SECHIBA, a new set of parameterizations of the hydrologic exchanges at the land–atmosphere interface within the LMD atmospheric general circulation model. J. Climate, 6, 248273.

    • Search Google Scholar
    • Export Citation
  • Farquhar, G. D., , S. von Caemmerer, , and J. A. Berry, 1980: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149, 7890.

    • Search Google Scholar
    • Export Citation
  • Foley, J. A., , C. I. Prentice, , N. Ramankutty, , S. Levis, , D. Pollard, , S. Sitch, , and A. Haxeltine, 1996: An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochem. Cycles, 10, 603628.

    • Search Google Scholar
    • Export Citation
  • Foley, J. A., , M. Heil Costa, , C. Delire, , N. Ramankutty, , and P. Synder, 2003: Green surprise? How the biosphere could affect the future of our climate. Front. Ecol. Environ., 1, 3844.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., , A. Czaja, , and B. L’Heveder, 1998: Air–sea feedback in the North Atlantic and surface boundary conditions for ocean models. J. Climate, 11, 23102324.

    • Search Google Scholar
    • Export Citation
  • Ghil, M., 2002: Natural climate variability. Encyclopedia of Global and Environmental Change, T. Munn, Ed., John Wiley and Sons, 544–549.

    • Search Google Scholar
    • Export Citation
  • Givnish, T. J., 2002: Adaptive significance of evergreen vs. deciduous leaves: Solving the triple paradox. Silva Fenn., 36, 703743.

  • Hahmann, A. N., , and R. E. Dickinson, 1997: RCCM2–BATS model over tropical South America: Applications to tropical deforestation. J. Climate, 10, 19441964.

    • Search Google Scholar
    • Export Citation
  • Hourdin, F., and Coauthors, 2006: The LMDZ4 general circulation model: Climate performance and sensitivity to parameterized physics with emphasis on tropical convection. Climate Dyn., 27, 787813.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., , J. J. Hack, , G. B. Bonan, , B. A. Boville, , D. L. Williamson, , and P. J. Rasch, 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11, 11311149.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., , P. A. Dirmeyer, , A. N. Hahmann, , R. Ijpelaar, , L. Tyahla, , P. Cox, , and M. J. Suarez, 2002: Comparing the degree of land–atmosphere interaction in four atmospheric general circulation models. J. Hydrometeor., 3, 363375.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610.

    • Search Google Scholar
    • Export Citation
  • Krinner, G., and Coauthors, 2005: A dynamic global vegetation model for studies of the coupled atmosphere–biosphere system. Global Biogeochem. Cycles, 19, 133.

    • Search Google Scholar
    • Export Citation
  • Kucharik, C. J., and Coauthors, 2000: Testing the performance of a dynamic global ecosystem model: Water balance, carbon balance, and vegetation structure. Global Biogeochem. Cycles, 14, 795825.

    • Search Google Scholar
    • Export Citation
  • Kucharik, C. J., , K. R. Brye, , J. M. Norman, , J. A. Foley, , S. T. Gower, , and L. G. Bundy, 2001: Measurements and modeling of carbon and nitrogen cycling in agroecosystems of southern Wisconsin: Potential for SOC sequestration during the next 50 years. Ecosystems (N. Y.), 4, 237258.

    • Search Google Scholar
    • Export Citation
  • Kucharik, C. J., , C. Barford, , M. El Maayar, , S. C. Wofsy, , R. K. Monson, , and D. D. Baldocchi, 2006: A multiyear evaluation of a dynamic global vegetation model at three AmeriFlux forest sites: Vegetation structure, phenology, soil temperature, and CO2 and H2O vapor exchange. Ecol. Modell., 196, 131.

    • Search Google Scholar
    • Export Citation
  • Kutzbach, J. E., , G. Bonan, , J. Foley, , and S. P. Harrison, 1996: Vegetation and soil feedbacks on the response of the African monsoon to orbital forcing in the early to middle Holocene. Nature, 384, 623626.

    • Search Google Scholar
    • Export Citation
  • Lean, J., , and D. A. Warrilow, 1989: Simulation of the regional climatic impact of Amazon deforestation. Nature, 342, 411413.

  • Lenters, J. D., , M. T. Coe, , and J. A. Foley, 2000: Surface water balance of the continental United States, 1963–1995: Regional evaluation of a terrestrial biosphere model and the NCEP/NCAR reanalysis. J. Geophys. Res., 105 (D17), 22 39322 425.

    • Search Google Scholar
    • Export Citation
  • Levis, S., , J. A. Foley, , V. Brovkin, , and D. Pollard, 1999: On the stability of the high-latitude climate–vegetation system in a coupled atmosphere–biosphere model. Global Ecol. Biogeogr., 8, 489500.

    • Search Google Scholar
    • Export Citation
  • Levis, S., , J. A. Foley, , and D. Pollard, 2000: Large-scale vegetation feedbacks on a doubled CO2 climate. J. Climate, 13, 13131325.

  • Liu, Z., , M. Notaro, , J. Kutzbach, , and N. Liu, 2006: Assessing global vegetation–climate feedbacks from observations. J. Climate, 19, 787814.

    • Search Google Scholar
    • Export Citation
  • Lotsch, A., , M. A. Friedl, , B. T. Anderson, , and C. J. Tucker, 2003: Coupled vegetation–precipitation variability observed from satellite and climate records. Geophys. Res. Lett., 30, 1774, doi:10.1029/2003GL017506.

    • Search Google Scholar
    • Export Citation
  • Marti, O., and Coauthors, 2010: Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution. Climate Dyn., 34, 126, doi:10.1007/s00382-009-0640-6.

    • Search Google Scholar
    • Export Citation
  • Morales, P., and Coauthors, 2005: Comparing and evaluating process-based ecosystem model predictions of carbon and water fluxes in major European forest biomes. Global Change Biol., 11, 22112233.

    • Search Google Scholar
    • Export Citation
  • Narisma, G. T., , J. A. Foley, , R. Licker, , and N. Ramankutty, 2007: Abrupt changes in rainfall during the twentieth century. Geophys. Res. Lett., 34, L06710, doi:10.1029/2006GL028628.

    • Search Google Scholar
    • Export Citation
  • New, M., , M. Hulme, , and P. D. Jones, 2000: Representing twentieth-century space–time climate variability. Part II: Development of 1901–96 monthly grids of terrestrial surface climate. J. Climate, 13, 22172238.

    • Search Google Scholar
    • Export Citation
  • New, M., , D. Lister, , M. Hulme, , and I. Makin, 2002: A high-resolution data set of surface climate over global land areas. Climate Res., 21, 125.

    • Search Google Scholar
    • Export Citation
  • Ngo-Duc, T., , K. Laval, , J. Polcher, , and A. Cazenave, 2005a: Contribution of continental water to sea level variations during the 1997–1998 El Niño–Southern Oscillation event: Comparison between Atmospheric Model Intercomparison Project simulations and TOPEX/Poseidon satellite data. J. Geophys. Res., 110, D09103, doi:10.1029/2004JD004940.

    • Search Google Scholar
    • Export Citation
  • Ngo-Duc, T., , K. Laval, , J. Polcher, , A. Lombard, , and A. Cazenave, 2005b: Effects of land water storage on global mean sea level over the past half century. Geophys. Res. Lett., 32, L09704, doi:10.1029/2005GL022719.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S., 2000: Land surface processes and Sahel climate. Rev. Geophys., 38, 117139.

  • Nobre, C. A., , P. J. Sellers, , and J. Shukla, 1991: Amazonian deforestation and regional climate change. J. Climate, 4, 957988.

  • Notaro, M., , Z. Liu, , and J. W. Williams, 2006: Observed vegetation–climate feedbacks in the United States. J. Climate, 19, 763786.

  • Piao, S. L., , P. Friedlingstein, , P. Ciais, , L. M. Zhou, , and A. P. Chen, 2006: Effect of climate and CO2 changes on the greening of the Northern Hemisphere over the past two decades. Geophys. Res. Lett., 33, L23402, doi:10.1029/2006GL028205.

    • Search Google Scholar
    • Export Citation
  • Piao, S. L., , P. Friedlingstein, , P. Ciais, , N. de Noblet-Ducoudre, , D. Labat, , and S. Zaehle, 2007: Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends. Proc. Nat. Acad. Sci. USA, 104, 15 24215 247.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., and Coauthors, 2002: The influence of land-use change and landscape dynamics on the climate system: Relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philos. Trans. Roy. Soc. London, 360A, 17051719.

    • Search Google Scholar
    • Export Citation
  • Pitman, A. J., and Coauthors, 2009: Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study. Geophys. Res. Lett., 36, L14814, doi:10.1029/2009GL039076.

    • Search Google Scholar
    • Export Citation
  • Prentice, C., , W. Cramer, , S. P. Harrison, , R. Leemans, , R. A. Monserud, , and A. M. Solomon, 1992: A global biome model based on plant physiology and dominance, soil properties and climate. J. Biogeogr., 19, 117134.

    • Search Google Scholar
    • Export Citation
  • Ramankutty, N., , C. Delire, , and P. Snyder, 2006: Feedbacks between agriculture and climate: An illustration of the potential unintended consequences of human land use activities. Global Planet. Change, 54, 7993.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., , D. E. Parker, , E. B. Horton, , C. K. Folland, , L. V. Alexander, , D. P. Rowell, , E. C. Kent, , and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rogard, E., 2009: Évaluation de la capacité du système sol-plante du modèle ORCHIDEE à générer de la persistance d’évènements secs et pluvieux. M.S. thesis, University Paris Diderot (Paris 7), Paris, France, 82 pp.

    • Search Google Scholar
    • Export Citation
  • Senna, M. C. A., , M. H. Costa, , and Y. E. Shimabukuro, 2005: Fraction of photosynthetically active radiation absorbed by Amazon tropical forest: A comparison of field measurements, modeling, and remote sensing. J. Geophys. Res., 110, G01008, doi:10.1029/2004JG000005.

    • Search Google Scholar
    • Export Citation
  • Senna, M. C. A., , M. H. Costa, , and G. F. Pires, 2009: Vegetation–atmosphere–soil nutrient feedbacks in the Amazon for different deforestation scenarios. J. Geophys. Res., 114, D04104, doi:10.1029/2008JD010401.

    • Search Google Scholar
    • Export Citation
  • Sitch, S., and Coauthors, 2003: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biol., 9, 161185.

    • Search Google Scholar
    • Export Citation
  • Snyder, P. K., , C. Delire, , and J. A. Foley, 2004a: Evaluating the influence of different vegetation biomes on the global climate. Climate Dyn., 23, 279302.

    • Search Google Scholar
    • Export Citation
  • Snyder, P. K., , J. A. Foley, , M. H. Hitchman, , and C. Delire, 2004b: Analyzing the effects of complete tropical forest removal on the regional climate using a detailed three-dimensional energy budget: An application to Africa. J. Geophys. Res., 109, D21102, doi:10.1029/2003JD004462.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., , D. Qin, , M. Manning, , M. Marquis, , K. Averyt, , M. M. B. Tignor, , H. L. Miller Jr., , and Z. Chen, Eds., 2007: Climate Change 2007: The Physical Sciences Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Strengers, B. J., and Coauthors, 2010: Assessing 20th century climate–vegetation feedbacks of land-use change and natural vegetation dynamics in a fully coupled vegetation–climate model. Int. J. Climatol., 30, 20552065.

    • Search Google Scholar
    • Export Citation
  • Texier, D., and Coauthors, 1997: Quantifying the role of biosphere-atmosphere feedbacks in climate change: Coupled model simulations for 6000 years BP and comparison with palaeodata for northern Eurasia and northern Africa. Climate Dyn., 13, 865881, doi:10.1007/s003820050202.

    • Search Google Scholar
    • Export Citation
  • Thompson, S., , B. Govindasamy, , A. Mirin, , K. Caldeira, , C. Delire, , J. Milovich, , M. Wickett, , and D. Erickson, 2004: Quantifying the effects of CO2-fertilized vegetation on future climate. Geophys. Res. Lett., 31, L23211, doi:10.1029/2004GL021239.

    • Search Google Scholar
    • Export Citation
  • Thonicke, K., , S. Venevsky, , S. Sitch, , and W. Cramer, 2001: The role of fire disturbance for global vegetation dynamics: Coupling fire into a Dynamic Global Vegetation Model. Global Ecol. Biogeogr., 10, 661677.

    • Search Google Scholar
    • Export Citation
  • Tian, Y., , R. E. Dickinson, , L. Zhou, , R. B. Myneni, , M. Friedl, , C. B. Schaaf, , M. Carroll, , and F. Gao, 2004: Land boundary conditions from MODIS data and consequences for the albedo of a climate model. Geophys. Res. Lett., 31, L05504, doi:10.1029/2003GL019104.

    • Search Google Scholar
    • Export Citation
  • Vérant, S., , K. Laval, , J. Polcher, , and M. De Castro, 2004: Sensitivity of the continental hydrologic cycle to the spatial resolution over the Iberian Peninsula. J. Hydrometeor., 5, 267285.

    • Search Google Scholar
    • Export Citation
  • Voldoire, A., , B. Heickhout, , M. Schaeffer, , J.-F. Royer, , and F. Chauvin, 2007: Climate simulation of the twenty-first century with interactive land-use changes. Climate Dyn., 29, 177193.

    • Search Google Scholar
    • Export Citation
  • Wang, G., , and E. A. B. Eltahir, 2000a: Biosphere–atmosphere interactions over West Africa. I: Development and validation of a coupled dynamic model. Quart. J. Roy. Meteor. Soc., 126, 12391260.

    • Search Google Scholar
    • Export Citation
  • Wang, G., , and E. A. B. Eltahir, 2000b: Ecosystem dynamics and the Sahel drought. Geophys. Res. Lett., 27, 795798.

  • Wang, G., , and E. A. B. Eltahir, 2000c: Role of vegetation dynamics in enhancing the low-frequency variability of the Sahel rainfall. Water Resour. Res., 36, 10131021.

    • Search Google Scholar
    • Export Citation
  • Wang, G., , E. A. B. Eltahir, , J. A. Foley, , D. Pollard, , and S. Levis, 2004: Decadal variability of rainfall in the Sahel: Results from the coupled GENESIS-IBIS atmosphere–biosphere model. Climate Dyn., 22, 625637.

    • Search Google Scholar
    • Export Citation
  • Winter, J. M., , J. S. Pal, , and E. A. B. Eltahir, 2009: Coupling of Integrated Biosphere Simulator to Regional Climate Model version 3. J. Climate, 22, 27432757.

    • Search Google Scholar
    • Export Citation
  • Woodward, F. I., 1987: Climate and Plant Distribution. Cambridge Studies in Ecology, Cambridge University Press, 174 pp.

  • Zeng, N., , J. D. Neelin, , K. M. Lau, , and C. J. Tucker, 1999: Enhancement of interdecadal climate variability in the Sahel by vegetation interaction. Science, 286, 15371540.

    • Search Google Scholar
    • Export Citation
  • Zeng, X. B., , R. E. Dickinson, , A. Walker, , M. Shaikh, , R. S. DeFries, , and J. G. Qi, 2000: Derivation and evaluation of global 1-km fractional vegetation cover data for land modeling. J. Appl. Meteor., 39, 826839.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 69 68 18
PDF Downloads 56 56 14

Vegetation Dynamics Enhancing Long-Term Climate Variability Confirmed by Two Models

View More View Less
  • 1 Groupe d’Etude de l’Atmosphère Météorologique, URA 1357 GAME/CNRM, CNRS/Météo-France, Toulouse, France
  • | 2 Laboratoire des Sciences du Climat et de l’Environnement, Unité Mixte CEA-CNRS-UVSQ, Gif-sur-Yvette, France
  • | 3 Institut des Sciences de l’Evolution-Montpellier, Unité Mixte UMII/CNRS, Université Montpellier II, Montpellier, France
© Get Permissions
Restricted access

Abstract

Two different coupled climate–vegetation models, the Community Climate Model version 3 coupled to the Integrated Biosphere Simulator (CCM3–IBIS) and the Laboratoire de Météorologie Dynamique’s climate model coupled to the Organizing Carbon and Hydrology in Dynamic Ecosystems model (LMDz–ORCHIDEE), are used to study the effects of vegetation dynamics on climate variability. Two sets of simulations of the preindustrial climate are performed using fixed climatological sea surface temperatures: one set taking into account vegetation cover dynamics and the other keeping the vegetation cover fixed. Spectral analysis of the simulated precipitation and temperature over land shows that for both models the interactions between vegetation dynamics and the atmosphere enhance the low-frequency variability of the biosphere–atmosphere system at time scales ranging from a few years to a century. Despite differences in the magnitude of the signal between the two models, this confirms that vegetation dynamics introduces a long-term memory into the climate system by slowly modifying the physical characteristics of the land surface (albedo, roughness evapotranspiration).

Unrealistic modeled feedbacks between the vegetation and the atmosphere would cast doubts on this result. The simulated feedback processes in the models used in this work are compared to the observed using a recently developed statistical approach. The models simulate feedbacks of the right sign and order of magnitude over large regions of the globe: positive temperature feedback in the mid- to high latitudes, negative feedback in semiarid regions, and positive precipitation feedback in semiarid regions. The models disagree in the tropics, where there is no statistical significance in the observations. The realistic modeled vegetation–atmosphere feedback gives us confidence that the vegetation dynamics enhancement of the long-term climate variability is not a model artifact.

Current affiliation: Ecole Normale Supérieure, Laboratoire de Météorologie Dynamique and CERES-ERTI, Paris, France.

Current affiliation: Department of Biological and Chemical Sciences, University of the West Indies, Bridgetown, Barbados.

Corresponding author address: Christine Delire, GMGEC, Météo-France, 42 av. G. Coriolis, 31057 Toulouse CEDEX, France. E-mail: christine.delire@meteo.fr

Abstract

Two different coupled climate–vegetation models, the Community Climate Model version 3 coupled to the Integrated Biosphere Simulator (CCM3–IBIS) and the Laboratoire de Météorologie Dynamique’s climate model coupled to the Organizing Carbon and Hydrology in Dynamic Ecosystems model (LMDz–ORCHIDEE), are used to study the effects of vegetation dynamics on climate variability. Two sets of simulations of the preindustrial climate are performed using fixed climatological sea surface temperatures: one set taking into account vegetation cover dynamics and the other keeping the vegetation cover fixed. Spectral analysis of the simulated precipitation and temperature over land shows that for both models the interactions between vegetation dynamics and the atmosphere enhance the low-frequency variability of the biosphere–atmosphere system at time scales ranging from a few years to a century. Despite differences in the magnitude of the signal between the two models, this confirms that vegetation dynamics introduces a long-term memory into the climate system by slowly modifying the physical characteristics of the land surface (albedo, roughness evapotranspiration).

Unrealistic modeled feedbacks between the vegetation and the atmosphere would cast doubts on this result. The simulated feedback processes in the models used in this work are compared to the observed using a recently developed statistical approach. The models simulate feedbacks of the right sign and order of magnitude over large regions of the globe: positive temperature feedback in the mid- to high latitudes, negative feedback in semiarid regions, and positive precipitation feedback in semiarid regions. The models disagree in the tropics, where there is no statistical significance in the observations. The realistic modeled vegetation–atmosphere feedback gives us confidence that the vegetation dynamics enhancement of the long-term climate variability is not a model artifact.

Current affiliation: Ecole Normale Supérieure, Laboratoire de Météorologie Dynamique and CERES-ERTI, Paris, France.

Current affiliation: Department of Biological and Chemical Sciences, University of the West Indies, Bridgetown, Barbados.

Corresponding author address: Christine Delire, GMGEC, Météo-France, 42 av. G. Coriolis, 31057 Toulouse CEDEX, France. E-mail: christine.delire@meteo.fr
Save