• Adler, R. F., and Coauthors, 2003: The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., , G. Gu, , J.-J. Wang, , G. J. Huffman, , S. Curtis, , and D. Bolvin, 2008: Exploring relationships between global precipitation and surface temperature on the longer-than-seasonal time scales (1979–2006). J. Geophys. Res., 113, D22104, doi:10.1029/2008JD010536.

    • Search Google Scholar
    • Export Citation
  • Allen, M. R., , and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224232.

  • Angell, J. K., 2000: Tropospheric temperature variations adjusted for El Niño, 1958-1998. J. Geophys. Res., 105, 11 84111 849.

  • Berg, W., , T. L’Ecuyer, , and C. Kummerow, 2006: Rainfall climate regimes: The relationship of regional TRMM rainfall biases to the environment. J. Appl. Meteor. Climatol., 45, 434454.

    • Search Google Scholar
    • Export Citation
  • Christy, J. R., , R. W. Spencer, , and W. D. Braswell, 2000: MSU tropospheric temperature: Dataset construction and radiosonde comparisons. J. Atmos. Oceanic Technol., 17, 11531170.

    • Search Google Scholar
    • Export Citation
  • Christy, J. R., , R. W. Spencer, , W. B. Norris, , and W. D. Braswell, 2003: Error estimates of version 5.0 of MSU–AMSU bulk atmospheric temperatures. J. Atmos. Oceanic Technol., 20, 613629.

    • Search Google Scholar
    • Export Citation
  • Curtis, S., , and R. F. Adler, 2003: The evolution of El Niño–precipitation relationships from satellites and gauges. J. Geophys. Res., 108, 4153, doi:10.1029/2002JD002690.

    • Search Google Scholar
    • Export Citation
  • Dai, A., , and T. M. L. Wigley, 2000: Global patterns of ENSO-induced precipitation. Geophys. Res. Lett., 27, 12831286.

  • Gillett, N. P., , A. J. Weaver, , F. W. Zwiers, , and M. F. Wehner, 2004: Detection of volcanic influence on global precipitation. Geophys. Res. Lett., 31, L12217, doi:10.1029/2004GL020044.

    • Search Google Scholar
    • Export Citation
  • Gu, G., , R. F. Adler, , G. Huffman, , and S. Curtis, 2007: Tropical rainfall variability on interannual-to-interdecadal/longer-time scales derived from the GPCP monthly product. J. Climate, 20, 40334046.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., , R. Ruedy, , J. Glascoe, , and M. Sato, 1999: GISS analysis of surface temperature change. J. Geophys. Res., 104, 30 99731 022.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., , and A. Kumar, 2002: Atmospheric response patterns associated with tropical forcing. J. Climate, 15, 21842203.

  • Huffman, G. J., , R. F. Adler, , D. T. Bolvin, , and G. Gu, 2009: Improvements in the GPCP global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808, doi:10.1029/2009GL040000.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., , and M. P. Hoerling, 2003: The nature and causes for the delayed atmospheric response to El Niño. J. Climate, 16, 13911403.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., , C.-H. Ho, , and M.-D. Chou, 1996: Water vapor and cloud feedback over tropical oceans: Can we use ENSO as a surrogate for climate change? Geophys. Res. Lett., 23, 29712974.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., , N. A. Rayner, , T. M. Smith, , D. C. Stokes, , and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625.

    • Search Google Scholar
    • Export Citation
  • Robock, A., 2000: Volcanic eruptions and climate. Rev. Geophys., 38, 191219.

  • Sato, M., , J. E. Hansen, , M. P. McCormick, , and J. B. Pollack, 1993: Stratospheric aerosol optical depths, 1850–1990. J. Geophys. Res., 98, 22 98722 994.

    • Search Google Scholar
    • Export Citation
  • Seager, R., , N. Harnik, , W. A. Robinson, , Y. Kushnir, , M. Ting, , H.-P. Huang, , and J. Velez, 2005: Mechanisms of ENSO-forcing of hemispherically symmetric precipitation variability. Quart. J. Roy. Meteor. Soc., 131, 15021527.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., , I. M. Held, , and C. S. Bretherton, 2002: The ENSO signal in tropical tropospheric temperature. J. Climate, 15, 27022706.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., 2000: The sensitivity of the tropical hydrological cycle to ENSO. J. Climate, 13, 538549.

  • Soden, B. J., , R. T. Wetherald, , G. L. Stenchikov, , and A. Robock, 2002: Global cooling after the eruption of Mount Pinatubo: A test of climate feedback by water vapor. Science, 296, 727730.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., , F. J. LaFontaine, , T. DeFelice, , and F. J. Wentz, 1998: Tropical oceanic precipitation changes after the 1991 Pinatubo eruption. J. Atmos. Sci., 55, 17071713.

    • Search Google Scholar
    • Export Citation
  • Stenchikov, G. L., , I. Kirchner, , A. Robock, , H. F. Graf, , J. C. Antuña, , R. G. Grainger, , A. Lambert, , and L. Thomason, 1998: Radiative forcing from the 1991 Mount Pinatubo volcanic eruption. J. Geophys. Res., 103, 13 83713 857.

    • Search Google Scholar
    • Export Citation
  • Su, H., , and J. D. Neelin, 2003: The scatter in tropical average precipitation anomalies. J. Climate, 16, 39663977.

  • Su, H., , J. D. Neelin, , and J. E. Meyerson, 2003: Sensitivity of tropical tropospheric temperature to sea surface temperature forcing. J. Climate, 16, 12831301.

    • Search Google Scholar
    • Export Citation
  • Su, H., , J. D. Neelin, , and J. E. Meyerson, 2005: Mechanisms for lagged atmospheric response to ENSO SST forcing. J. Climate, 18, 41954215.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , J. M. Caron, , D. P. Stepaniak, , and S. Worley, 2002: Evolution of El Niño–Southern Oscillation and global atmospheric surface temperatures. J. Geophys. Res., 107, 4065, doi:10.1029/2000JD000298.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , J. Fasullo, , and L. Smith, 2005: Trends and variability in column-integrated atmospheric water vapor. Climate Dyn., 24, 741758.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., , E. M. Rasmusson, , T. P. Mitchell, , V. E. Kousky, , E. S. Sarachik, , and H. von Storch, 1998: On the structure and evolution of ENSO-related climate variability in the tropical pacific: Lessons from TOGA. J. Geophys. Res., 103, 14 24114 259.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., 1997: A well-calibrated ocean algorithm for special sensor microwave/imager. J. Geophys. Res., 102, 87038718.

  • Wentz, F. J., , L. Ricciardulli, , K. Hilburn, , and C. Mears, 2007: How much more rain will global warming being? Science, 317, 233235.

  • Wigley, T. M. L., 2000: ENSO, volcanoes, and record-breaking temperatures. Geophys. Res. Lett., 27, 41014104.

  • Wigley, T. M. L., , C. M. Ammann, , B. D. Santer, , and S. C. B. Raper, 2005: Effect of climate sensitivity on the response to volcanic forcing. J. Geophys. Res., 110, D09107, doi:10.1029/2004JD005557.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., , K. Hu, , J. Hafner, , H. Tokinaga, , Y. Du, , G. Huang, , and T. Sampe, 2009: Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Climate, 22, 730747.

    • Search Google Scholar
    • Export Citation
  • Yulaeva, E., , and J. M. Wallace, 1994: The signature of ENSO in global temperature and precipitation fields derived from the Microwave Sounding Unit. J. Climate, 7, 17191736.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 82 82 13
PDF Downloads 71 71 12

Precipitation and Temperature Variations on the Interannual Time Scale: Assessing the Impact of ENSO and Volcanic Eruptions

View More View Less
  • 1 Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, and Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, Maryland
© Get Permissions
Restricted access

Abstract

The effects of ENSO and two large tropical volcanic eruptions (El Chichón, March 1982; Mt. Pinatubo, June 1991) are examined for the period of 1979–2008 using various satellite- and station-based observations of precipitation, temperature (surface and atmospheric), and tropospheric water vapor content. By focusing on the responses in the time series of tropical and global means over land, ocean, and land and ocean combined, the authors intend to provide an observational comparison of how these two phenomena, represented by Niño-3.4 and the tropical mean stratospheric aerosol optical thickness (τ), respectively, influence precipitation, temperature, and water vapor variations.

As discovered in past studies, strong same-sign ENSO signals appear in tropical and global mean temperature (surface and tropospheric) over both land and ocean. However, ENSO only has very weak impact on tropical and global mean (land + ocean) precipitation, though intense anomalies are readily seen in the time series of precipitation averaged over either land or ocean. In contrast, the two volcanoes decreased not only tropical and global mean surface and tropospheric temperature but also tropical and global mean (land + ocean) precipitation. The differences between the responses to ENSO and volcanic eruptions are thus further examined by means of lag-correlation analyses. The ENSO-related peak responses in oceanic precipitation and sea surface temperature (SST) have the same time lags with Niño-3.4, 2 (4) months for the tropical (global) means. Tropical and global mean tropospheric water vapor over ocean (and land) generally follows surface temperature. However, land precipitation responds to ENSO much faster than temperature, suggesting a certain time needed for surface energy adjustment there following ENSO-related circulation and precipitation anomalies. Weak ENSO signals in the tropical and global mean mid- to lower-tropospheric atmospheric (dry) static instability are further discovered, which tend to be consistent with weak ENSO responses in the tropical and global mean (land + ocean) precipitation. For volcanic eruptions, tropical and global mean precipitation over either ocean or land responds faster than temperature (surface and atmospheric) and tropospheric water vapor averaged over the same areas, suggesting that precipitation tends to be more sensitive to volcanic-related solar forcing. The volcanic-related precipitation variations are further shown to be related to the changes in the mid- to lower-tropospheric atmospheric (dry) instability.

Corresponding author address: Dr. Guojun Gu, Code 613.1, NASA/GSFC, Greenbelt, MD 20771. E-mail: guojun.gu-1@nasa.gov

Abstract

The effects of ENSO and two large tropical volcanic eruptions (El Chichón, March 1982; Mt. Pinatubo, June 1991) are examined for the period of 1979–2008 using various satellite- and station-based observations of precipitation, temperature (surface and atmospheric), and tropospheric water vapor content. By focusing on the responses in the time series of tropical and global means over land, ocean, and land and ocean combined, the authors intend to provide an observational comparison of how these two phenomena, represented by Niño-3.4 and the tropical mean stratospheric aerosol optical thickness (τ), respectively, influence precipitation, temperature, and water vapor variations.

As discovered in past studies, strong same-sign ENSO signals appear in tropical and global mean temperature (surface and tropospheric) over both land and ocean. However, ENSO only has very weak impact on tropical and global mean (land + ocean) precipitation, though intense anomalies are readily seen in the time series of precipitation averaged over either land or ocean. In contrast, the two volcanoes decreased not only tropical and global mean surface and tropospheric temperature but also tropical and global mean (land + ocean) precipitation. The differences between the responses to ENSO and volcanic eruptions are thus further examined by means of lag-correlation analyses. The ENSO-related peak responses in oceanic precipitation and sea surface temperature (SST) have the same time lags with Niño-3.4, 2 (4) months for the tropical (global) means. Tropical and global mean tropospheric water vapor over ocean (and land) generally follows surface temperature. However, land precipitation responds to ENSO much faster than temperature, suggesting a certain time needed for surface energy adjustment there following ENSO-related circulation and precipitation anomalies. Weak ENSO signals in the tropical and global mean mid- to lower-tropospheric atmospheric (dry) static instability are further discovered, which tend to be consistent with weak ENSO responses in the tropical and global mean (land + ocean) precipitation. For volcanic eruptions, tropical and global mean precipitation over either ocean or land responds faster than temperature (surface and atmospheric) and tropospheric water vapor averaged over the same areas, suggesting that precipitation tends to be more sensitive to volcanic-related solar forcing. The volcanic-related precipitation variations are further shown to be related to the changes in the mid- to lower-tropospheric atmospheric (dry) instability.

Corresponding author address: Dr. Guojun Gu, Code 613.1, NASA/GSFC, Greenbelt, MD 20771. E-mail: guojun.gu-1@nasa.gov
Save