• Aumont, O., , and L. Bopp, 2006: Globalizing results from ocean in situ iron fertilization studies. Global Biogeochem. Cycles, 20, GB2017, doi:10.1029/2005GB002591.

    • Search Google Scholar
    • Export Citation
  • Aumont, O., , E. Maier-Reimer, , S. Blain, , and P. Monfray, 2003: An ecosystem model of the global ocean including Fe, Si, P colimitations. Global Biogeochem. Cycles, 17, 1060, doi:10.1029/2001GB001745.

    • Search Google Scholar
    • Export Citation
  • Bates, N. R., , S. B. Moran, , D. A. Hansell, , and J. T. Mathis, 2006: An increasing CO2 sink in the Arctic Ocean due to sea-ice loss. Geophys. Res. Lett., 33, L23609, doi:10.1029/2006GL027028.

    • Search Google Scholar
    • Export Citation
  • Bleck, R., , C. Rooth, , D. M. Hu, , and L. T. Smith, 1992: Salinity-driven thermocline transients in a wind-forced and thermohaline-forced isopycnic coordinate model of the North Atlantic. J. Phys. Oceanogr., 22, 14861505.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., , and V. Arora, 2009: Temperature and concentration feedbacks in the carbon cycle. Geophys. Res. Lett., 36, L02704, doi:10.1029/2008GL036220.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., , and V. Arora, 2010: Geographic aspects of temperature and concentration feedbacks in the carbon budget. J. Climate, 23, 775784.

    • Search Google Scholar
    • Export Citation
  • Bopp, L., , C. Le Quere, , M. Heimann, , A. C. Manning, , and P. Monfray, 2002: Climate-induced oceanic oxygen fluxes: Implications for the contemporary carbon budget. Global Biogeochem. Cycles, 16, 1022, doi:10.1029/2001GB001445.

    • Search Google Scholar
    • Export Citation
  • Boville, B. A., , and P. R. Gent, 1998: The NCAR Climate System Model, version one. J. Climate, 11, 11151130.

  • Boville, B. A., , J. T. Kiehl, , P. J. Rasch, , and F. O. Bryan, 2001: Improvements to the NCAR CSM-1 for transient climate simulations. J. Climate, 14, 164179.

    • Search Google Scholar
    • Export Citation
  • Boyer-Montegut, C. D., , G. Madec, , A. S. Fischer, , A. Lazar, , and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, doi:10.1029/2004JC002378.

    • Search Google Scholar
    • Export Citation
  • Collier, M. A., , and P. Durack, 2006: CSIRO netCDF version of the NODC World Ocean Atlas 2005. Commonwealth Scientific and Industrial Research Organisation, Marine and Atmospheric Research Paper 15, 1–45 pp.

    • Search Google Scholar
    • Export Citation
  • Conkright, M. E., , R. A. Locarnini, , H. E. Garcia, , T. D. O’Brien, , T. P. Boyer, , B. B. Stephens, , and J. I. Antonov, 2002: World Ocean Atlas 2001: Objective Analyses, Data, Statistics, and Figures. CD-ROM Documentation. National Oceanographic Data Center, 17 pp.

    • Search Google Scholar
    • Export Citation
  • Cox, P. M., , R. A. Betts, , C. D. Jones, , S. A. Spall, , and I. J. Totterdell, 2000: Acceleration of global warming due to carbon cycle feedbacks in a coupled climate model. Nature, 408, 184187.

    • Search Google Scholar
    • Export Citation
  • Cox, P. M., , R. A. Betts, , M. Collins, , P. P. Harris, , C. Huntingford, , and C. D. Jones, 2004: Amazonian forest dieback under climate–carbon cycle projections for the 21st century. Theor. Appl. Climatol., 78, 137156.

    • Search Google Scholar
    • Export Citation
  • Crueger, T., , E. Roeckner, , T. Raddatz, , R. Schnur, , and P. Wetzel, 2008: Ocean dynamics determine the response of oceanic CO2 uptake to climate change. Climate Dyn., 31, 151168.

    • Search Google Scholar
    • Export Citation
  • Deque, M., , C. Dreveton, , A. Braun, , and D. Cariolle, 1994: The ARPEGE/IF’s atmosphere model—A contribution to the French community climate modeling. Climate Dyn., 10, 249266.

    • Search Google Scholar
    • Export Citation
  • Doney, S. C., , K. Lindsay, , I. Fung, , and J. John, 2006: Natural variability in a stable, 1000-yr global coupled climate–carbon cycle simulation. J. Climate, 19, 30333054.

    • Search Google Scholar
    • Export Citation
  • Dufresne, J. L., and Coauthors, 2002: On the magnitude of positive feedback between future climate change and the carbon cycle. Geophys. Res. Lett., 29, 1405, doi:10.1029/2001GL013777.

    • Search Google Scholar
    • Export Citation
  • Dutay, J.-C., and Coauthors, 2002: Evaluation of ocean model ventilation with CFC-11: Comparison of 13 global ocean models. Ocean Modell., 4, 89120.

    • Search Google Scholar
    • Export Citation
  • Edmonds, J. A., , F. Joos, , N. Nakicenovic, , R. G. Richels, , and J. L. Sarmiento, 2004: Scenarios, targets, gaps, and costs. The Global Carbon Cycle. Integrating Humans, Climate, and the Natural World, C. B. Field, and M. R. Raupach, Eds., Island Press, 77–102.

    • Search Google Scholar
    • Export Citation
  • Friedlingstein, P., , L. Bopp, , P. Ciais, , J.-L. Dufresne, , L. Fairhead, , H. LeTreut, , P. Monfray, , and J. Orr, 2001: Positive feedback between future climate change and the carbon cycle. Geophys. Res. Lett., 28, 15431546.

    • Search Google Scholar
    • Export Citation
  • Friedlingstein, P., and Coauthors, 2006: Climate–carbon cycle feedback analysis: Results from the (CMIP)-M-4 model intercomparison. J. Climate, 19, 33373353.

    • Search Google Scholar
    • Export Citation
  • Frölicher, T. L., , and F. Joos, 2010: Reversible and irreversible impacts of greenhouse gas emissions in multi-century projections with the NCAR global coupled carbon cycle-climate model. Climate Dyn., 35, 14391459.

    • Search Google Scholar
    • Export Citation
  • Frölicher, T. L., , F. Joos, , G. K. Plattner, , M. Steinacher, , and S. C. Doney, 2009: Natural variability and anthropogenic trends in oceanic oxygen in a coupled carbon cycle-climate model ensemble. Global Biogeochem. Cycles, 23, GB1003, doi:10.1029/2008GB003316.

    • Search Google Scholar
    • Export Citation
  • Fung, I. Y., , S. C. Doney, , K. Lindsay, , and J. John, 2005: Evolution of carbon sinks in a changing climate. Proc. Natl. Acad. Sci. USA, 102, 11 20111 206.

    • Search Google Scholar
    • Export Citation
  • Furevik, T., , M. Bentsen, , H. Drange, , I. K. T. Kindem, , N. G. Kvamsto, , and A. Sorteberg, 2003: Description and evaluation of the bergen climate model: ARPEGE coupled with MICOM. Climate Dyn., 21, 2751.

    • Search Google Scholar
    • Export Citation
  • Gehlen, M., , L. Bopp, , N. Ernprin, , O. Aumont, , C. Heinze, , and O. Raguencau, 2006: Reconciling surface ocean productivity, export fluxes and sediment composition in a global biogeochemical ocean model. Biogeosciences, 3, 521537.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., , F. O. Bryan, , G. Danabasoglu, , S. C. Doney, , W. R. Holland, , W. G. Large, , and J. C. McWilliams, 1998: The NCAR climate system model global ocean component. J. Climate, 11, 12871306.

    • Search Google Scholar
    • Export Citation
  • Gerber, M., , and F. Joos, 2010: Carbon sources and sinks from an ensemble Kalman filter ocean data assimilation. Global Biogeochem. Cycles, 24, GB3004, doi:10.1029/2009GB003531.

    • Search Google Scholar
    • Export Citation
  • Gerber, M., , F. Joos, , M. Vázquez-Rodriguez, , F. Touratier, , and C. Goyet, 2009: Regional air–sea fluxes of anthropogenic carbon inferred with an ensemble Kalman filter. Global Biogeochem. Cycles, 23, GB1013, doi:10.1029/2008GB003247.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., , C. D. Jones, , P. Cadule, , and P. Friedlingstein, 2009: Quantifying carbon cycle feedbacks. J. Climate, 22, 52325250.

  • Gruber, N., and Coauthors, 2009: Oceanic sources, sinks, and transport of atmospheric CO2. Global Biogeochem. Cycles, 23, GB1005, doi:10.1029/2008GB003349.

    • Search Google Scholar
    • Export Citation
  • Hourdin, F., and Coauthors, 2006: The LMDZ4 general circulation model: Climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Climate Dyn., 27, 787813.

    • Search Google Scholar
    • Export Citation
  • Ito, T., , M. Woloszyn, , and M. Mazloff, 2010: Anthropogenic carbon dioxide transport in the Southern Ocean driven by Ekman flow. Nature, 463, 8083.

    • Search Google Scholar
    • Export Citation
  • Iudicone, D., , G. Madec, , B. Blanke, , and S. Speich, 2008a: The role of Southern Ocean surface forcings and mixing in the global conveyor. J. Phys. Oceanogr., 38, 13771400.

    • Search Google Scholar
    • Export Citation
  • Iudicone, D., , G. Madec, , and T. J. McDougall, 2008b: Water-mass transformations in a neutral density framework and the key role of light penetration. J. Phys. Oceanogr., 38, 13571376.

    • Search Google Scholar
    • Export Citation
  • Jacobson, A. R., , S. E. M. Fletcher, , N. Gruber, , J. L. Sarmiento, , and M. Gloor, 2007: A joint atmosphere-ocean inversion for surface fluxes of carbon dioxide: 2. Regional results. Global Biogeochem. Cycles, 21, GB1020, doi:10.1029/2006GB002703.

    • Search Google Scholar
    • Export Citation
  • Jones, C. D., , P. Cox, , and C. Huntingford, 2003: Uncertainty in climate–carbon cycle projections associated with the sensitivity of soil respiration to temperature. Tellus, 55B, 642648.

    • Search Google Scholar
    • Export Citation
  • Jones, C. D., , P. M. Cox, , and C. Huntingford, 2006: Climate–carbon cycle feedbacks under stabilization: Uncertainty and observational constraints. Tellus, 58B, 603613.

    • Search Google Scholar
    • Export Citation
  • Joos, F., , G.-K. Plattner, , T. F. Stocker, , O. Marchal, , and A. Schmittner, 1999: Global warming and marine carbon cycle feedbacks on future atmospheric CO2. Science, 284, 464476.

    • Search Google Scholar
    • Export Citation
  • Joos, F., and Coauthors, 2001: Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios. Global Biogeochem. Cycles, 15, 891907.

    • Search Google Scholar
    • Export Citation
  • Keeling, R. F., , S. C. Piper, , and M. Heimann, 1996: Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentrations. Nature, 381, 218221.

    • Search Google Scholar
    • Export Citation
  • Key, R. M., and Coauthors, 2004: A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP). Global Biogeochem. Cycles, 18, GB4031, doi:10.1029/2004GB002247.

    • Search Google Scholar
    • Export Citation
  • Khatiwala, S., , F. Primeau, , and T. Hall, 2009: Reconstruction of the history of anthropogenic CO2 concentrations in the ocean. Nature, 462, 346U110.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., , J. J. Hack, , G. B. Bonan, , B. A. Boville, , D. L. Williamson, , and P. J. Rasch, 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11, 11311149.

    • Search Google Scholar
    • Export Citation
  • Krinner, G., and Coauthors, 2005: A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochem. Cycles, 19, GB1015, doi:10.1029/2003GB002199.

    • Search Google Scholar
    • Export Citation
  • Lachkar, Z., , J. C. Orr, , J. C. Dutay, , and P. Delecluse, 2009: On the role of mesoscale eddies in the ventilation of Antarctic intermediate water. Deep-Sea Res. I, 56, 909925.

    • Search Google Scholar
    • Export Citation
  • Lenton, A., , F. Codron, , L. Bopp, , N. Metzl, , P. Cadule, , A. Tagliabue, , and J. Le Sommer, 2009: Stratospheric ozone depletion reduces ocean carbon uptake and enhances ocean acidification. Geophys. Res. Lett., 36, L12606, doi:10.1029/2009GL038227.

    • Search Google Scholar
    • Export Citation
  • Le Quere, C., and Coauthors, 2007: Saturation of the Southern Ocean CO2 sink due to recent climate change. Science, 319, 17351738.

  • Levitus, S., 1982: Climatological Atlas of the World Ocean. NOAA Prof. Paper 13, 173 pp. and 17 microfiche.

  • Levitus, S., , and T. P. Boyer, 1994: Temperature. Vol. 4, World Ocean Atlas 1994, NOAA Atlas NESDIS 4, 117 pp.

  • Levitus, S., , R. Burgett, , and T. P. Boyer, 1994: Salinity. Vol. 3, World Ocean Atlas 1994, NOAA Atlas NESDIS 3, 99 pp.

  • Levitus, S., , M. E. Conkright, , J. L. Reid, , and R. G. Najjar, 1993: Distribution of nitrate, phosphate and silicate in the world oceans. Prog. Oceanogr., 31, 245273.

    • Search Google Scholar
    • Export Citation
  • Madec, G., , P. Delecluse, , M. Imbard, , and M. Lévy, 1998: OPA 8.1 ocean general circulation model reference manual. Notes du Pôle de Modélisation 11. IPSL, 91 pp.

    • Search Google Scholar
    • Export Citation
  • Maier-Reimer, E., 1993: Geochemical cycles in an Ocean General Circulation Model. Preindustrial tracer distributions. Global Biogeochem. Cycles, 7, 645677.

    • Search Google Scholar
    • Export Citation
  • Maier-Reimer, E., , U. Mikolajewicz, , and K. Hasselmann, 1993: Mean circulation of the Hamburg LSG OGCM and its sensitivity to the thermohaline surface forcing. J. Phys. Oceanogr., 23, 769782.

    • Search Google Scholar
    • Export Citation
  • Maier-Reimer, E., , U. Mikolajewicz, , and A. Winguth, 1996: Future ocean uptake of CO2: Interaction between ocean circulation and biology. Climate Dyn., 12, 711721.

    • Search Google Scholar
    • Export Citation
  • Maier-Reimer, E., , I. Kriest, , J. Segschneider, , and P. Wezel, 2005: The Hamburg Ocean Carbon Cycle model HAMOCC5.1—Technical Description. Tech. Description Release 1.1, Berichte zur Erdsystemforschung 14, Max Planck Institute for Meteorology, 50 pp.

    • Search Google Scholar
    • Export Citation
  • Marland, G., , and T. B. R. J. Andres, 2005: Global, regional, and national CO2 emissions. Trends: A Compendium of Data on Global Change, Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy.

    • Search Google Scholar
    • Export Citation
  • Marsland, S. J., , H. Haak, , J. H. Jungclaus, , M. Latif, , and F. Roske, 2003: The Max Planck Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modell., 5, 91127.

    • Search Google Scholar
    • Export Citation
  • Marti, O., and Coauthors, 2009: Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution. Climate Dyn., 34, 126.

    • Search Google Scholar
    • Export Citation
  • Matear, R. J., , and A. C. Hirst, 1999: Climate change feedback on the future oceanic CO2 uptake. Tellus, 51B, 722733.

  • Matsumoto, K., and Coauthors, 2004: Evaluation of ocean carbon cycle models with data-based metrics. Geophys. Res. Lett., 31, L07303, doi:10.1029/2003GL018970.

    • Search Google Scholar
    • Export Citation
  • Matthews, H. D., 2006: Emissions targets for CO2 stabilization as modified by carbon cycle feedbacks. Tellus, 58B, 591602.

  • Matthews, H. D., 2007: Implications of CO2 fertilization for future climate change in a coupled climate–carbon model. Global Change Biol., 13, 10681078.

    • Search Google Scholar
    • Export Citation
  • Matthews, H. D., , and D. W. Keith, 2007: Carbon-cycle feedbacks increase the likelihood of a warmer future. Geophys. Res. Lett., 34, L09702, doi:10.1029/2006GL028685.

    • Search Google Scholar
    • Export Citation
  • Matthews, H. D., , M. Eby, , A. J. Weaver, , and B. J. Hawkins, 2005: Primary productivity control of simulated carbon cycle-climate feedbacks. Geophys. Res. Lett., 32, L14708, doi:10.1029/2005GL022941.

    • Search Google Scholar
    • Export Citation
  • Matthews, H. D., , M. Eby, , T. Ewen, , P. Friedlingstein, , and B. J. Hawkins, 2007: What determines the magnitude of carbon cycle-climate feedbacks? Global Biogeochem. Cycles, 21, GB2012, doi:10.1029/2006GB002733.

    • Search Google Scholar
    • Export Citation
  • Meehl, G., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–846.

    • Search Google Scholar
    • Export Citation
  • Metzl, N., 2009: Decadal increase of oceanic carbon dioxide in Southern Indian Ocean surface waters (1991-2007). Deep-Sea Res. II, 56, 607609.

    • Search Google Scholar
    • Export Citation
  • Meyer, R., and Coauthors, 1999: The substitution of high-resolution terrestrial biosphere models and carbon sequestration in response to changing CO2 and climate. Global Biogeochem. Cycles, 13, 785802.

    • Search Google Scholar
    • Export Citation
  • Mignone, B. K., , A. Gnanadesikan, , J. L. Sarmiento, , and R. D. Slater, 2006: Central role of Southern Hemisphere winds and eddies in modulating the oceanic uptake of anthropogenic carbon. Geophys. Res. Lett., 33, L01604, doi:10.1029/2005GL024464.

    • Search Google Scholar
    • Export Citation
  • Mikaloff-Fletcher, S. E. M., and Coauthors, 2006: Inverse estimates of anthropogenic CO2 uptake, transport, and storage by the ocean. Global Biogeochem. Cycles, 20, GB2002, doi:10.1029/2005GB002530.

    • Search Google Scholar
    • Export Citation
  • Najjar, R. G., and Coauthors, 2007: Impact of circulation on export production, dissolved organic matter, and dissolved oxygen in the ocean: Results from Phase II of the Ocean Carbon-cycle Model Intercomparison Project (OCMIP-2). Global Biogeochem. Cycles, 21, GB3007, doi:10.1029/2006GB002857.

    • Search Google Scholar
    • Export Citation
  • Nakicenovic, N., and Coauthors, 2000: IPCC Special Report on Emission Scenarios. Cambridge University Press, 599 pp.

  • Orr, J. C., and Coauthors, 2001: Estimate of anthropogenic carbon uptake from four three-dimensional global models. Global Biogeochem. Cycles, 15, 4360.

    • Search Google Scholar
    • Export Citation
  • Oschlies, A., 2009: Impact of atmospheric and terrestrial CO2 feedbacks on fertilization-induced marine carbon uptake. Biogeosciences , 6, 16031613.

    • Search Google Scholar
    • Export Citation
  • Plattner, G. K., , F. Joos, , T. F. Stocker, , and O. Marchal, 2001: Feedback mechanisms and sensitivities of ocean carbon uptake under global warming. Tellus, 53B, 564592.

    • Search Google Scholar
    • Export Citation
  • Prentice, I. C., and Coauthors, 2001: The carbon cycle and atmospheric carbon dioxide. Climate Change 2001: The Scientific Basis, J. T. Houghton, et al., Eds., Cambridge University Press, 183–237.

    • Search Google Scholar
    • Export Citation
  • Randerson, J. T., , M. V. Thompson, , T. J. Conway, , I. Y. Fung, , and C. B. Field, 1997: The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide. Global Biogeochem. Cycles, 11, 535560.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., , J. M. Oberhuber, , A. Bacher, , M. Christoph, , and I. Kirchner, 1996: ENSO variability and atmospheric response in a global coupled atmosphere-ocean GCM. Climate Dyn., 12, 737754.

    • Search Google Scholar
    • Export Citation
  • Sabine, C. L., and Coauthors, 2004: The oceanic sink for anthropogenic CO2. Science, 305, 367371.

  • Sarmiento, J. L., , and C. Le Quéré, 1996: Oceanic carbon dioxide uptake in a model of century-scale global warming. Science, 274, 13461350.

    • Search Google Scholar
    • Export Citation
  • Sarmiento, J. L., , T. M. C. Hughes, , R. J. Stouffer, , and S. Manabe, 1998: Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature, 393, 245249.

    • Search Google Scholar
    • Export Citation
  • Schneider, B., and Coauthors, 2008: Climate-induced interannual variability of marine primary and export production in three global coupled climate carbon cycle models. Biogeosciences, 5, 597614.

    • Search Google Scholar
    • Export Citation
  • Schuster, U., , and A. J. Watson, 2007: A variable and decreasing sink for atmospheric CO2 in the North Atlantic. J. Geophys. Res., 112, C11006, doi:10.1029/2006JC003941.

    • Search Google Scholar
    • Export Citation
  • Schuster, U., and Coauthors, 2009: Trends in North Atlantic sea surface fCO2 from 1990 to 2006. Deep-Sea Res. II, 56, 620629.

  • Sitch, S., and Coauthors, 2003: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biol., 9, 161185.

    • Search Google Scholar
    • Export Citation
  • Six, K. D., , and E. Maier-Reimer, 1996: Effects of plankton dynamics on seasonal carbon fluxes in an ocean general circulation model. Global Biogeochem. Cycles, 10, 559583.

    • Search Google Scholar
    • Export Citation
  • Steinacher, M., , F. Joos, , T. L. Frolicher, , G. K. Plattner, , and S. C. Doney, 2009: Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model. Biogeosciences, 6, 515533.

    • Search Google Scholar
    • Export Citation
  • Steinacher, M., and Coauthors, 2010: Projected 21st century decrease in marine productivity: a multi-model analysis. Biogeosciences, 7, 9791005.

    • Search Google Scholar
    • Export Citation
  • Swingedouw, D., , L. Bopp, , A. Matras, , and P. Braconnot, 2007: Effect of land-ice melting and associated changes in the AMOC result in little overall impact on oceanic CO2 uptake. Geophys. Res. Lett., 34, L23706, doi:10.1029/2007GL031990.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., and Coauthors, 2002: Global sea-air CO2 flux based on climatological surface ocean pCO(2), and seasonal biological and temperature effects. Deep-Sea Res. II, 49, 16011622.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., and Coauthors, 2009: Climatological mean and decadal change in surface ocean pCO(2), and net sea-air CO2 flux over the global oceans. Deep-Sea Res. II, 56, 554577.

    • Search Google Scholar
    • Export Citation
  • Tjiputra, J. F., , K. Assmann, , M. Bentsen, , I. Bethke, , O. H. Ottera, , C. Sturm, , and C. Heinze, 2010: Bergen earth system model (BCM-C): Model description and regional climate–carbon cycle feedbacks assessment. Geosci. Model Dev. Discuss., 2, 845887.

    • Search Google Scholar
    • Export Citation
  • Watson, A. J., and Coauthors, 2009: Tracking the variable north atlantic sink for atmospheric CO2. Science, 326, 13911393.

  • Yoshikawa, C., , M. Kawamiya, , T. Kato, , Y. Yamanaka, , and T. Matsuno, 2008: Geographical distribution of the feedback between future climate change and the carbon cycle. J. Geophys. Res., 113, G03002, doi:10.1029/2007JG000570.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 269 269 50
PDF Downloads 184 184 37

Regional Impacts of Climate Change and Atmospheric CO2 on Future Ocean Carbon Uptake: A Multimodel Linear Feedback Analysis

View More View Less
  • 1 Laboratoire des Sciences du Climat et de l’Environnement, Gif sur Yvette, France
  • | 2 Institute of Geosciences, Kiel, Germany
  • | 3 Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland
  • | 4 Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
  • | 5 Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey
  • | 6 Max Planck Institut für Meteorologie, Hamburg, Germany
  • | 7 Geophysical Institute, University of Bergen, and Bjerknes Centre for Climate Research, Bergen, Norway
© Get Permissions
Restricted access

Abstract

The increase in atmospheric CO2 over this century depends on the evolution of the oceanic air–sea CO2 uptake, which will be driven by the combined response to rising atmospheric CO2 itself and climate change. Here, the future oceanic CO2 uptake is simulated using an ensemble of coupled climate–carbon cycle models. The models are driven by CO2 emissions from historical data and the Special Report on Emissions Scenarios (SRES) A2 high-emission scenario. A linear feedback analysis successfully separates the regional future (2010–2100) oceanic CO2 uptake into a CO2-induced component, due to rising atmospheric CO2 concentrations, and a climate-induced component, due to global warming. The models capture the observation-based magnitude and distribution of anthropogenic CO2 uptake. The distributions of the climate-induced component are broadly consistent between the models, with reduced CO2 uptake in the subpolar Southern Ocean and the equatorial regions, owing to decreased CO2 solubility; and reduced CO2 uptake in the midlatitudes, owing to decreased CO2 solubility and increased vertical stratification. The magnitude of the climate-induced component is sensitive to local warming in the southern extratropics, to large freshwater fluxes in the extratropical North Atlantic Ocean, and to small changes in the CO2 solubility in the equatorial regions. In key anthropogenic CO2 uptake regions, the climate-induced component offsets the CO2-induced component at a constant proportion up until the end of this century. This amounts to approximately 50% in the northern extratropics and 25% in the southern extratropics and equatorial regions. Consequently, the detection of climate change impacts on anthropogenic CO2 uptake may be difficult without monitoring additional tracers, such as oxygen.

Corresponding author address: Tilla Roy, Laboratoire des Sciences du Climat et de L’Environnement (LSCE), UMR CEA-CNRS-UVSQ, CEN de Saclay/L’Orme des Merisiers, Bât. 712, F-91191 Gif-sur-Yvette CEDEX, France. E-mail: tilla.roy@lsce.ipsl.fr

Abstract

The increase in atmospheric CO2 over this century depends on the evolution of the oceanic air–sea CO2 uptake, which will be driven by the combined response to rising atmospheric CO2 itself and climate change. Here, the future oceanic CO2 uptake is simulated using an ensemble of coupled climate–carbon cycle models. The models are driven by CO2 emissions from historical data and the Special Report on Emissions Scenarios (SRES) A2 high-emission scenario. A linear feedback analysis successfully separates the regional future (2010–2100) oceanic CO2 uptake into a CO2-induced component, due to rising atmospheric CO2 concentrations, and a climate-induced component, due to global warming. The models capture the observation-based magnitude and distribution of anthropogenic CO2 uptake. The distributions of the climate-induced component are broadly consistent between the models, with reduced CO2 uptake in the subpolar Southern Ocean and the equatorial regions, owing to decreased CO2 solubility; and reduced CO2 uptake in the midlatitudes, owing to decreased CO2 solubility and increased vertical stratification. The magnitude of the climate-induced component is sensitive to local warming in the southern extratropics, to large freshwater fluxes in the extratropical North Atlantic Ocean, and to small changes in the CO2 solubility in the equatorial regions. In key anthropogenic CO2 uptake regions, the climate-induced component offsets the CO2-induced component at a constant proportion up until the end of this century. This amounts to approximately 50% in the northern extratropics and 25% in the southern extratropics and equatorial regions. Consequently, the detection of climate change impacts on anthropogenic CO2 uptake may be difficult without monitoring additional tracers, such as oxygen.

Corresponding author address: Tilla Roy, Laboratoire des Sciences du Climat et de L’Environnement (LSCE), UMR CEA-CNRS-UVSQ, CEN de Saclay/L’Orme des Merisiers, Bât. 712, F-91191 Gif-sur-Yvette CEDEX, France. E-mail: tilla.roy@lsce.ipsl.fr
Save