• Akaike, H., 1973: Information theory and an extension of the maximum likelihood principle. 2nd International Symposium on Information Theory, B. N. Petrov and F. Czáki, Eds., Akademiai Kiadó, 267–281.

    • Search Google Scholar
    • Export Citation
  • Back, L. E., , and C. S. Bretherton, 2009: A simple model of climatological rainfall and vertical motion patterns over the tropical oceans. J. Climate, 22, 64776497.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., , K. I. Hodges, , and M. Esch, 2007: Tropical cyclones in a T159 resolution global climate model: Comparison with observations and re-analysis. Tellus, 59A, 396416.

    • Search Google Scholar
    • Export Citation
  • Bister, M., , and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 52, 233240.

  • Bister, M., , and K. A. Emanuel, 2002a: Low frequency variability of tropical cyclone potential intensity. 1. Interannual to interdecadal variability. J. Geophys. Res., 107, 4801, doi:10.1029/2001JD000776.

    • Search Google Scholar
    • Export Citation
  • Bister, M., , and K. A. Emanuel, 2002b: Low frequency variability of tropical cyclone potential intensity. 2. Climatology for 1982–1995. J. Geophys. Res., 107, 4621, doi:10.1029/2001JD000780.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , M. E. Peters, , and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528.

    • Search Google Scholar
    • Export Citation
  • Bye, J., , and K. Keay, 2008: A new hurricane index for the Caribbean. Interscience, 33, 556560.

  • Camargo, S. J., , K. A. Emanuel, , and A. H. Sobel, 2007a: Use of genesis potential index to diagonose ENSO effects on tropical cyclone genesis. J. Climate, 20, 48194834.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., , A. H. Sobel, , A. G. Barnston, , and K. A. Emanuel, 2007b: Tropical cyclone genesis potential index in climate models. Tellus, 59A, 428443.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., , M. C. Wheeler, , and A. H. Sobel, 2009: Diagnosis of the MJO modulation of tropical cyclogenesis using an empirical index. J. Atmos. Sci., 66, 30613074.

    • Search Google Scholar
    • Export Citation
  • Cheung, K. K. W., 2004: Large-scale environmental parameters associated with tropical cyclone formations in the western North Pacific. J. Climate, 17, 466484.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., , and A. H. Sobel, 2002: Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate. J. Climate, 15, 26162631.

    • Search Google Scholar
    • Export Citation
  • Daoud, A. B., , E. Sauquet, , M. Langand, , C. Obled, , and G. Bontron, 2009: Comparison of 850-hPa relative humidity between ERA-40 and NCEP/NCAR re-analyses: Detection of suspicious data in ERA-40. Atmos. Sci. Lett., 10, 4347.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., , and L. F. Bosart, 2003: Baroclinically induced tropical cyclogenesis. Mon. Wea. Rev., 131, 27302747.

  • DeMaria, M., , J. A. Knaff, , and B. H. Conell, 2001: A tropical cyclone genesis parameter for the tropical Atlantic. Wea. Forecasting, 16, 219233.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., , and C. P. Schmertmann, 1993: Improving extended-range seasonal forecasts of intense Atlantic hurricane activity. Wea. Forecasting, 8, 345351.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1989: The finite-amplitude nature of tropical cyclogenesis. J. Atmos. Sci., 46, 34313456.

  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., , and D. S. Nolan, 2004: Tropical cyclone activity and global climate. Proc. 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 240–241.

    • Search Google Scholar
    • Export Citation
  • Evan, A., , and S. Camargo, 2011: A climatology of Arabian Sea cyclonic storms. J. Climate, 24, 140158.

  • Evans, J. L., , and M. P. Guishard, 2009: Atlantic subtropical storms. Part I: Diagnostic criteria and composite analysis. Mon. Wea. Rev., 137, 20652080.

    • Search Google Scholar
    • Export Citation
  • Fu, R., , A. D. D. Genio, , and W. B. Rossow, 1990: Behavior of deep convective clouds in the tropical Pacific deduced from ISCCP radiances. J. Climate, 3, 11291152.

    • Search Google Scholar
    • Export Citation
  • Fu, R., , A. D. D. Genio, , and W. B. Rossow, 1994: Influence of ocean surface conditions on atmospheric vertical thermodynamic structure and deep convection. J. Climate, 7, 10921108.

    • Search Google Scholar
    • Export Citation
  • Gadgil, S., , V. Joseph, , and N. V. Joshi, 1984: Ocean–atmosphere coupling over monsoon regions. Nature, 312, 141143.

  • Graham, N. E., , and T. P. Barnett, 1987: Sea surface temperature, surface wind divergence, and convection over tropical oceans. Science, 238, 657659.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700.

  • Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans, Royal Meteorological Society, 155–218.

    • Search Google Scholar
    • Export Citation
  • Gualdi, S., , E. Scoccimarro, , and A. Navarra, 2008: Changes in tropical cyclone activity due to global warming: Results from a high-resolution coupled general circulation model. J. Climate, 21, 52045228.

    • Search Google Scholar
    • Export Citation
  • Guishard, M. P., , J. L. Evans, , and R. E. Hart, 2009: Atlantic subtropical storms. Part II: Climatology. J. Climate, 22, 35743594.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247267.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., , M. C. Kruk, , D. H. Levinson, , H. J. Diamond, , and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS). Bull. Amer. Meteor. Soc., 91, 363376.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., , J. J. Sirutis, , S. T. Garner, , G. A. Vecchi, , and I. M. Held, 2008: Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions. Nat. Geosci., 1, 359364.

    • Search Google Scholar
    • Export Citation
  • Kotal, S. D., , P. K. Kundu, , and S. K. R. Bhowmik, 2009: Analysis of cyclogenesis parameter for developing and nondeveloping low-pressure systems over the Indian Sea. Nat. Hazards, 50, 389402.

    • Search Google Scholar
    • Export Citation
  • Lyon, B., , and S. J. Camargo, 2009: The seasonally-varying influence of ENSO on rainfall and tropical cyclone activity in the Philippines. Climate Dyn., 32, 125141.

    • Search Google Scholar
    • Export Citation
  • McDonnell, K. A., , and N. J. Holbrook, 2004: A Poisson regression model of tropical cyclogenesis for the Australian–southwest Pacific Ocean region. Wea. Forecasting, 19, 440455.

    • Search Google Scholar
    • Export Citation
  • Mestre, O., , and S. Hallegatte, 2009: Predictors of tropical cyclone numbers and extreme hurricane intensities over the North Atlantic using generalized additive and linear models. J. Climate, 22, 633648.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., , and B. Wang, 2010: Future change of North Atlantic tropical cyclone tracks: Projection by a 20-km-mesh global atmospheric model. J. Climate, 23, 26992721.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., , E. D. Rappin, , and K. A. Emanuel, 2007: Tropical cyclogenesis sensitivity to environmental parameters in radiative-convective equilibrium. Quart. J. Roy. Meteor. Soc., 133, 20852107.

    • Search Google Scholar
    • Export Citation
  • Oouchi, K., , J. Yoshimura, , H. Yoshimura, , R. Mizuta, , S. Kusunoki, , and A. Noda, 2006: Tropical cyclone climatology in a global-warming climate as simulated in a 20-km-mesh global atmospheric model: Frequency and wind intensity analyses. J. Meteor. Soc. Japan, 84, 259276.

    • Search Google Scholar
    • Export Citation
  • Ramsay, H. A., , and A. H. Sobel, 2011: Effects of relative and absolute sea surface temperature on tropical cyclone potential intensity using a single-column model. J. Climate, 24, 183193.

    • Search Google Scholar
    • Export Citation
  • Royer, J.-F., , F. Chauvin, , B. Timbal, , P. Araspin, , and D. Grimal, 1998: A GCM study of the impact of greenhouse gas increase on the frequency of occurrence of tropical cyclone. Climatic Change, 38, 307343.

    • Search Google Scholar
    • Export Citation
  • Sall, S. M., , H. Sauvageot, , A. T. Gaye, , A. Viltard, , and P. de Felice, 2006: A cyclogenesis index for tropical Atlantic off the African coasts. Atmos. Res., 79, 123147.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., , and R. W. Reynolds, 2004: Improved extended reconstruction of SST (1854–1997). J. Climate, 17, 24662477.

  • Sobel, A. H., , I. M. Held, , and C. S. Bretherton, 2002: The ENSO signal in tropical tropospheric temperature. J. Climate, 15, 27022706.

    • Search Google Scholar
    • Export Citation
  • Solow, A., , and N. Nicholls, 1990: The relationship between the Southern Oscillation and tropical cyclone frequency in the Australian region. J. Climate, 3, 10971101.

    • Search Google Scholar
    • Export Citation
  • Su, H., , D. Neelin, , and J. E. Meyerson, 2003: Sensitivity of tropical tropospheric temperature to sea surface temperature forcing. J. Climate, 16, 12831301.

    • Search Google Scholar
    • Export Citation
  • Swanson, K. L., 2008: Nonlocality of Atlantic tropical cyclone intensity. Geochem. Geophys. Geosyst., 9, Q04V01, doi:10.1029/2007GC001844.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Vecchi, G. A., , and B. J. Soden, 2007a: Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450, 10661070.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , and B. J. Soden, 2007b: Increased tropical Atlantic wind shear in model projections of global warming. Geophys. Res. Lett., 34, L08702, doi:10.1029/2006GL028905.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , K. L. Swanson, , and B. J. Soden, 2008: Whither hurricane activity? Science, 322, 687689.

  • Villarini, G., , G. A. Vecchi, , and J. A. Smith, 2010: Modeling of the dependence of tropical storm counts in the North Atlantic basin on climate indices. Mon. Wea. Rev., 138, 26812705.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., , and R. W. Spencer, 1998: SSM/I rain retrievals within a unified all-weather ocean algorithm. J. Atmos. Sci., 55, 16131627.

    • Search Google Scholar
    • Export Citation
  • Yokoi, S., , and Y. N. Takayuba, 2009: Multi-model projection of global warming impact on tropical cyclone genesis frequency over the western North Pacific. J. Meteor. Soc. Japan, 87, 525538.

    • Search Google Scholar
    • Export Citation
  • Yokoi, S., , Y. N. Takayuba, , and J. C. L. Chan, 2009: Tropical cyclone genesis frequency over the western North Pacific simulated in medium-resolution coupled general circulation models. Climate Dyn., 33, 665683.

    • Search Google Scholar
    • Export Citation
  • Yoshimura, J., , M. Sugi, , and A. Noda, 2006: Influence of greenhouse warming on tropical cyclone frequency. J. Meteor. Soc. Japan, 86, 405428.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 1993: Large-scale variability of atmospheric deep convection in relation to sea surface temperature in the tropics. J. Climate, 6, 18981913.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., , I. M. Held, , S.-J. Lin, , and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 66536678.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 205 205 18
PDF Downloads 162 162 16

A Poisson Regression Index for Tropical Cyclone Genesis and the Role of Large-Scale Vorticity in Genesis

View More View Less
  • 1 International Research Institute for Climate and Society, Columbia University, Palisades, New York
  • | 2 Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York
  • | 3 Department of Applied Physics and Applied Mathematics, and Department of Earth and Environmental Sciences, Columbia University, New York, New York
© Get Permissions
Restricted access

Abstract

A Poisson regression between the observed climatology of tropical cyclogenesis (TCG) and large-scale climate variables is used to construct a TCG index. The regression methodology is objective and provides a framework for the selection of the climate variables in the index. Broadly following earlier work, four climate variables appear in the index: low-level absolute vorticity, relative humidity, relative sea surface temperature (SST), and vertical shear. Several variants in the choice of predictors are explored, including relative SST versus potential intensity and satellite-based column-integrated relative humidity versus reanalysis relative humidity at a single level; these choices lead to modest differences in the performance of the index. The feature of the new index that leads to the greatest improvement is a functional dependence on low-level absolute vorticity that causes the index response to absolute vorticity to saturate when absolute vorticity exceeds a threshold. This feature reduces some biases of the index and improves the fidelity of its spatial distribution. Physically, this result suggests that once low-level environmental vorticity reaches a sufficiently large value, other factors become rate limiting so that further increases in vorticity (at least on a monthly mean basis) do not increase the probability of genesis.

Although the index is fit to climatological data, it reproduces some aspects of interannual variability when applied to interannually varying data. Overall, the new index compares positively to the genesis potential index (GPI), whose derivation, computation, and analysis is more complex in part because of its dependence on potential intensity.

Corresponding author address: M. K. Tippett, International Research Institute for Climate and Society, The Earth Institute of Columbia University, Lamont Campus, 61 Route 9W, Palisades, NY 10964. E-mail: tippett@iri.columbia.edu

Abstract

A Poisson regression between the observed climatology of tropical cyclogenesis (TCG) and large-scale climate variables is used to construct a TCG index. The regression methodology is objective and provides a framework for the selection of the climate variables in the index. Broadly following earlier work, four climate variables appear in the index: low-level absolute vorticity, relative humidity, relative sea surface temperature (SST), and vertical shear. Several variants in the choice of predictors are explored, including relative SST versus potential intensity and satellite-based column-integrated relative humidity versus reanalysis relative humidity at a single level; these choices lead to modest differences in the performance of the index. The feature of the new index that leads to the greatest improvement is a functional dependence on low-level absolute vorticity that causes the index response to absolute vorticity to saturate when absolute vorticity exceeds a threshold. This feature reduces some biases of the index and improves the fidelity of its spatial distribution. Physically, this result suggests that once low-level environmental vorticity reaches a sufficiently large value, other factors become rate limiting so that further increases in vorticity (at least on a monthly mean basis) do not increase the probability of genesis.

Although the index is fit to climatological data, it reproduces some aspects of interannual variability when applied to interannually varying data. Overall, the new index compares positively to the genesis potential index (GPI), whose derivation, computation, and analysis is more complex in part because of its dependence on potential intensity.

Corresponding author address: M. K. Tippett, International Research Institute for Climate and Society, The Earth Institute of Columbia University, Lamont Campus, 61 Route 9W, Palisades, NY 10964. E-mail: tippett@iri.columbia.edu
Save