• Anthes, R. A., 1984: Enhancement of convective precipitation by mesoscale variations in vegetative covering in semiarid regions. J. Climate Appl. Meteor., 23, 541554.

    • Search Google Scholar
    • Export Citation
  • Atkinson, B. W., 1981: Meso-Scale Atmospheric Circulations. Academic Press, 495 pp.

  • Avissar, R., , and Y. Liu, 1996: Three-dimensional numerical study of shallow convective clouds and precipitation induced by land surface forcing. J. Geophys. Res., 101 (D3), 74997518.

    • Search Google Scholar
    • Export Citation
  • Baldi, M., , G. A. Dalu, , and R. A. Pielke Sr., 2008: Vertical velocities and available potential energy generated by landscape variability—Theory. J. Appl. Meteor. Climatol., 47, 397410.

    • Search Google Scholar
    • Export Citation
  • Chagnon, F. J. F., , and R. L. Bras, 2005: Contemporary climate change in the Amazon. Geophys. Res. Lett., 32, L13703, doi:10.1029/2005GL022722.

    • Search Google Scholar
    • Export Citation
  • Chagnon, F. J. F., , R. L. Bras, , and J. Wang, 2004: Climatic shift in patterns of shallow clouds over the Amazon. Geophys. Res. Lett., 31, L24212, doi:10.1029/2004GL021188.

    • Search Google Scholar
    • Export Citation
  • Cutrim, E. M., , D. W. Martin, , and R. M. Rabin, 1995: Enhancement of cumulus clouds over deforested lands in Amazonia. Bull. Amer. Meteor. Soc., 76, 18011805.

    • Search Google Scholar
    • Export Citation
  • D’Almeida, C., , C. J. Vörösmarty, , G. C. Hurtt, , J. A. Marengo, , S. L. Dingman, , and B. D. Keim, 2007: The effects of deforestation on the hydrological cycle in Amazonia: A review on scale and resolution. Int. J. Climatol., 27, 633647.

    • Search Google Scholar
    • Export Citation
  • Dalu, G. A., , and R. A. Pielke Sr., 1993: Vertical heat fluxes generated by mesoscale atmospheric flow induced by thermal inhomogeneities in the PBL. J. Atmos. Sci., 50, 919926.

    • Search Google Scholar
    • Export Citation
  • Dalu, G. A., , R. A. Pielke Sr., , M. Baldi, , and X. Zeng, 1996: Heat and momentum fluxes induced by thermal inhomogeneities. J. Atmos. Sci., 53, 32863302.

    • Search Google Scholar
    • Export Citation
  • Hasler, N., , and R. Avissar, 2007: What controls evapotranspiration in the Amazon basin? J. Hydrometeor., 8, 380395.

  • Kummerow, C., , W. Barnes, , T. Kozu, , J. Shiue, , and J. Simpson, 1998: The tropical rainfall measurement mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817.

    • Search Google Scholar
    • Export Citation
  • Lima, M. A., , and J. W. Wilson, 2008: Convective storm initiation in a moist tropical environment. Mon. Wea. Rev., 136, 18471864.

  • Negri, A., , T. Bell, , and L. Xu, 2002: Sampling of the diurnal cycle of precipitation using TRMM. J. Atmos. Oceanic Technol., 19, 13331344.

    • Search Google Scholar
    • Export Citation
  • Nepstad, D., and Coauthors, 2002: The effects of partial throughfall exclusion on canopy processes, aboveground production, and biogeochemistry of an Amazon forest. J. Geophys. Res., 107, 8085, doi:10.1029/2001JD000360.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. L., and Coauthors, 2009: Drought sensitivity of the Amazon rainforest. Science, 323, 13441347.

  • Pielke, R. A., Sr., 1984: Mesoscale Meteorological Modeling. International Geophysics, Vol. 78, Academic Press, 612 pp.

  • Pielke, R. A., Sr., 2001: Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev. Geophys., 39, 151171.

    • Search Google Scholar
    • Export Citation
  • Rabin, R. M., , S. Stadler, , P. J. Wetzel, , D. J. Stensrud, , and M. Gregory, 1990: Observed effects of landscape variability on convective clouds. Bull. Amer. Meteor. Soc., 71, 272280.

    • Search Google Scholar
    • Export Citation
  • Rennó, N. O., , and A. P. Ingersoll, 1996: Natural convection as a heat engine: A theory for CAPE. J. Atmos. Sci., 53, 572585.

  • Rozante, J., , D. S. Moreira, , L. de Goncalves, , and D. Vila, 2010: Combining TRMM and surface observations of precipitation: Technique and validation over South America. Wea. Forecasting, 25, 885894.

    • Search Google Scholar
    • Export Citation
  • Silva, R. R. D., , D. Werth, , and R. Avissar, 2008: Regional impacts of future land-cover changes on the Amazon basin wet-season climate. J. Climate, 21, 11531170.

    • Search Google Scholar
    • Export Citation
  • Soares-Filho, B. S., and Coauthors, 2006: Modelling conservation in the Amazon basin. Nature, 440, 520523.

  • Souza, E. P., , N. O. Rennó, , and M. A. F. Silva Dias, 2000: Convective circulations induced by surface heterogeneities. J. Atmos. Sci., 57, 29152922.

    • Search Google Scholar
    • Export Citation
  • Wang, J., , and D. B. Wolff, 2010: Evaluation of TRMM ground-validation radar-rain errors using rain gauge measurements. J. Appl. Meteor. Climatol., 49, 310324.

    • Search Google Scholar
    • Export Citation
  • Wang, J., , R. L. Bras, , and E. A. B. Eltahir, 1996: A stochastic linear theory of mesoscale circulation induced by the thermal heterogeneity of the land surface. J. Atmos. Sci., 53, 33493363.

    • Search Google Scholar
    • Export Citation
  • Wang, J., and Coauthors, 2009: The impact of deforestation in the Amazon basin on cloud climatology. Proc. Natl. Acad. Sci. USA, 106, 36703674.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 61 61 22
PDF Downloads 39 39 19

Precipitation Variability over the Forest-to-Nonforest Transition in Southwestern Amazonia

View More View Less
  • 1 Massachusetts Institute of Technology, Cambridge, Massachusetts
  • | 2 University of California, Irvine, Irvine, California
  • | 3 Georgia Institute of Technology, Atlanta, Georgia
© Get Permissions
Restricted access

Abstract

Prior research has shown that deforestation in the southwestern Amazon enhances the formation of nonprecipitating shallow cumulus clouds, while deep cumulus convection was favored over forested land. The research presented here further investigates the trends of hydrometeors in the area by examining how precipitation frequency changes as a function of distance to the forest’s edge. Measurements are made from the precipitation radar on the Tropical Rainfall Measuring Mission (TRMM; TRMM 2A25) satellite, and continuous forest coverage is retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS; MODIS MCD12Q1). The event-based areal fractions of precipitation coverage (precipitation fraction) are calculated; referenced to forested, nonforested, and forest-edge land cover; and compared. As results are generally consistent with previous findings, the novel conclusions here extend that precipitation frequency in the southwestern Amazon (i) decreases over regions of nonforests far removed (10-plus km) from forest borders but (ii) increases within several kilometers of the forest edges, particularly over the nonforest side of the transition.

Corresponding author address: Ryan Knox, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Room 48-212, Cambridge, MA 02139. E-mail: rknox@mit.edu

Abstract

Prior research has shown that deforestation in the southwestern Amazon enhances the formation of nonprecipitating shallow cumulus clouds, while deep cumulus convection was favored over forested land. The research presented here further investigates the trends of hydrometeors in the area by examining how precipitation frequency changes as a function of distance to the forest’s edge. Measurements are made from the precipitation radar on the Tropical Rainfall Measuring Mission (TRMM; TRMM 2A25) satellite, and continuous forest coverage is retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS; MODIS MCD12Q1). The event-based areal fractions of precipitation coverage (precipitation fraction) are calculated; referenced to forested, nonforested, and forest-edge land cover; and compared. As results are generally consistent with previous findings, the novel conclusions here extend that precipitation frequency in the southwestern Amazon (i) decreases over regions of nonforests far removed (10-plus km) from forest borders but (ii) increases within several kilometers of the forest edges, particularly over the nonforest side of the transition.

Corresponding author address: Ryan Knox, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Room 48-212, Cambridge, MA 02139. E-mail: rknox@mit.edu
Save