• Allan, R., , and T. Ansell, 2006: A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J. Climate, 19, 58165842.

    • Search Google Scholar
    • Export Citation
  • Álvarez-García, F., , M. Latif, , and A. Biastoch, 2008: On multidecadal and quasi-decadal North Atlantic variability. J. Climate, 21, 34333452.

    • Search Google Scholar
    • Export Citation
  • Cayan, D., 1992: Latent and sensible heat flux anomalies over the northern oceans: Driving the sea surface temperature. J. Phys. Oceanogr., 22, 859881.

    • Search Google Scholar
    • Export Citation
  • Czaja, A., , and J. Marshall, 2001: Observations of atmosphere–ocean coupling in the North Atlantic. Quart. J. Roy. Meteor. Soc., 127, 18931916.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , and M. Blackmon, 1993: Surface climate variations over the North Atlantic Ocean during winter: 1900–1993. J. Climate, 6, 17431753.

    • Search Google Scholar
    • Export Citation
  • Dong, B., , and R. T. Sutton, 2007: Enhancement of ENSO variability by a weakened Atlantic thermohaline circulation in a coupled GCM. J. Climate, 20, 49204938.

    • Search Google Scholar
    • Export Citation
  • Eden, C., , and J. Willebrand, 2001: Mechanism of interannual to decadal variability of the North Atlantic circulation. J. Climate, 14, 22662280.

    • Search Google Scholar
    • Export Citation
  • Eden, C., , and R. Greatbatch, 2003: A damped decadal oscillation in the North Atlantic Ocean climate system. J. Climate, 16, 40434060.

    • Search Google Scholar
    • Export Citation
  • Foltz, G. R., , and M. J. McPhaden, 2006: The role of oceanic heat advection in the evolution of tropical North and South Atlantic SST anomalies. J. Climate, 19, 61226138.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., , and E. Kestenare, 2005: Observed Atlantic SST anomaly impact on the NAO: An update. J. Climate, 18, 40894094.

  • Frankignoul, C., , G. de Coëtglon, , T. M. Joyce, , and S. Dong, 2001: Gulf Stream variability and ocean–atmosphere interactions. J. Phys. Oceanogr., 31, 35163529.

    • Search Google Scholar
    • Export Citation
  • Ghil, M., and Coauthors, 2002: Advanced spectral methods for climatic time series. Rev. Geophys., 40, 1003, doi:10.1029/2000RG000092.

  • Grötzner, A., , M. Latif, , and T. P. Barnett, 1998: A decadal climate cycle in the North Atlantic Ocean as simulated by the ECHO coupled GCM. J. Climate, 11, 831847.

    • Search Google Scholar
    • Export Citation
  • Houghton, R. W., , and Y. M. Tourre, 1992: Characteristics of low-frequency sea surface temperature fluctuations in the tropical Atlantic. J. Climate, 5, 765771.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269, 676679.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., , J. Hack, , D. Shea, , J. Caron, , and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Climate, 21, 51455153.

    • Search Google Scholar
    • Export Citation
  • Josey, S. A., , and R. Marsh, 2005: Surface freshwater flux variability and recent freshening of the North Atlantic in the eastern subpolar gyre. J. Geophys. Res., 110, C05008, doi:10.1029/2004JC002521.

    • Search Google Scholar
    • Export Citation
  • Kaylor, R. E., 1977: Filtering and decimation of digital time series. Institute for Physical Science and Technology Tech. Rep. BN 850, 14 pp. [Available from Institute of Physical Science and Technology, University of Maryland, College Park, MD 20742.]

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., 1994: Interdecadal variations in North Atlantic sea surface temperatures and associated atmospheric conditions. J. Climate, 7, 141157.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., , and S. G. Yeager, 2009: The global climatology of an interannually varying air sea flux data set. Climate Dyn., 33, 341364.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and Coauthors, 2004: Reconstructing, monitoring, and predicting multidecadal-scale changes in the North Atlantic thermohaline circulation with sea surface temperature. J. Climate, 17, 16051614.

    • Search Google Scholar
    • Export Citation
  • Latif, M., , M. Collins, , H. Pohlmann, , and N. Keenlyside, 2006: A review of predictability studies of Atlantic Sector climate on decadal time scales. J. Climate, 19, 59715987.

    • Search Google Scholar
    • Export Citation
  • Losada, T., , B. Rodríguez-Fonseca, , C. R. Mechoso, , and H.-Y. Ma, 2007: Impacts of SST anomalies on the North Atlantic atmospheric circulation: A case study for the northern winter 1995/1996. Climate Dyn., 29, 807819.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., , H. Johnson, , and J. Goodman, 2001a: A study of the interaction of the North Atlantic Oscillation with ocean circulation. J. Climate, 14, 13991421.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and Coauthors, 2001b: North Atlantic climate variability: Phenomena, impacts and mechanisms. Int. J. Climatol., 21, 18631898.

    • Search Google Scholar
    • Export Citation
  • Mélice, J.-L., , and J. Servain, 2003: The tropical Atlantic meridional SST gradient index and its relationships with the SOI, NAO and Southern Ocean. Climate Dyn., 20, 447464.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., 2000: Relationships between low-frequency variability in the Southern Hemisphere and sea surface temperature anomalies. J. Climate, 13, 35993610.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., , and S. Hakkinen, 2001: Decadal variations in the tropical South Atlantic and linkages to the Pacific. Geophys. Res. Lett., 28, 20652068.

    • Search Google Scholar
    • Export Citation
  • Müller, W. A., , C. Frankignoul, , and N. Chouaib, 2008: Observed decadal tropical Pacific–North Atlantic teleconnections. Geophys. Res. Lett., 35, L24810, doi:10.1029/2008GL035901.

    • Search Google Scholar
    • Export Citation
  • Okumura, Y., , S.-P. Xie, , A. Numaguti, , and T. Tanimota, 2001: Tropical Atlantic air–sea interaction and its influence on the NAO. Geophys. Res. Lett., 28, 15071510.

    • Search Google Scholar
    • Export Citation
  • Pohlmann, H., , and M. Latif, 2005: Atlantic versus Indo-Pacific influence on Atlantic-European climate. Geophys. Res. Lett., 32, L05707, doi:10.1029/2004GL021316.

    • Search Google Scholar
    • Export Citation
  • Saravanan, R., , and J. C. McWilliams, 1998: Advective ocean–atmosphere interaction: An analytical stochastic model with implications for decadal variability. J. Climate, 11, 165188.

    • Search Google Scholar
    • Export Citation
  • Sun, F., , and J.-Y. Yu, 2009: A 10–15-yr modulation cycle of ENSO intensity. J. Climate, 22, 17181735.

  • Ting, M., , Y. Kushnir, , R. Seager, , and C. Li, 2009: Forced and internal twentieth-century SST trends in the North Atlantic. J. Climate, 22, 14691481.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , and J. W. Hurrell, 1994: Decadal atmosphere–ocean variations in the Pacific. Climate Dyn., 9, 303319.

  • Visbeck, M., , E. Chassignet, , R. Curry, , T. Delworth, , B. Dickson, , and G. Krahmann, 2003: The ocean’s response to North Atlantic Oscillation variability. The North Atlantic Oscillation: Climate Significance and Environmental Impact, J. W. Hurrell et al., Eds., Geophys. Monogr., No. 134, Amer. Geophys. Union, 113–146.

    • Search Google Scholar
    • Export Citation
  • Wang, C., , and J. Picaut, 2004: Understanding ENSO physics—A review. Earth’s Climate: The Ocean–Atmosphere Interaction, C. W. S.-P. Xie and J. A. Carton, Eds., Geophys. Monogr., No. 147, Amer. Geophys. Union, 1–19.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1997: Resampling hypothesis tests for autocorrelated fields. J. Climate, 10, 6582.

  • Wu, L., , and Z. Liu, 2005: North Atlantic decadal variability: Air–sea coupling, oceanic memory, and potential Northern Hemisphere resonance. J. Climate, 18, 331349.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., , and Y. Tanimoto, 1998: A pan-Atlantic decadal oscillation. Geophys. Res. Lett., 25, 21852188.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 17 17 5
PDF Downloads 9 9 5

On the Structure and Teleconnections of North Atlantic Decadal Variability

View More View Less
  • 1 Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
© Get Permissions
Restricted access

Abstract

Decadal variability in the North Atlantic has been associated in the literature with a tripolar pattern of sea surface temperature (SST) anomalies that show one sign in the western midlatitudinal North Atlantic and the opposite in the subpolar and tropical North Atlantic. The present analysis of observed SST from 1870 to 2009 leads to the dissection of the SST tripole into two components, each with a different time scale in the decadal band and different teleconnections in the Atlantic basin; while the subpolar and tropical poles present quasi-decadal variations with a period of about 9 years, essentially uncorrelated with other parts of the basin, the center of action in the western midlatitudes is characterized by a longer time scale of about 14 years and significant correlations with the tropical South Atlantic and the Norwegian and North Sea(s). The 9-yr period variations are associated with an atmospheric configuration resembling the east Atlantic pattern, whereas the 14-yr period fluctuations seem to be related to the North Atlantic Oscillation pattern. Each component also bears a different relationship with the decadal variability in the Pacific Ocean.

Corresponding author address: Francisco J. Álvarez García, Dept. de Física, Universidad de Alcalá, Ctra. Madrid-Barcelona km. 33.6, 28871 Alcalá de Henares, Madrid, Spain. E-mail: franciscoj.alvarez@uah.es

Abstract

Decadal variability in the North Atlantic has been associated in the literature with a tripolar pattern of sea surface temperature (SST) anomalies that show one sign in the western midlatitudinal North Atlantic and the opposite in the subpolar and tropical North Atlantic. The present analysis of observed SST from 1870 to 2009 leads to the dissection of the SST tripole into two components, each with a different time scale in the decadal band and different teleconnections in the Atlantic basin; while the subpolar and tropical poles present quasi-decadal variations with a period of about 9 years, essentially uncorrelated with other parts of the basin, the center of action in the western midlatitudes is characterized by a longer time scale of about 14 years and significant correlations with the tropical South Atlantic and the Norwegian and North Sea(s). The 9-yr period variations are associated with an atmospheric configuration resembling the east Atlantic pattern, whereas the 14-yr period fluctuations seem to be related to the North Atlantic Oscillation pattern. Each component also bears a different relationship with the decadal variability in the Pacific Ocean.

Corresponding author address: Francisco J. Álvarez García, Dept. de Física, Universidad de Alcalá, Ctra. Madrid-Barcelona km. 33.6, 28871 Alcalá de Henares, Madrid, Spain. E-mail: franciscoj.alvarez@uah.es
Save