The Energy Budget of the Polar Atmosphere in MERRA

Richard I. Cullather Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Richard I. Cullather in
Current site
Google Scholar
PubMed
Close
and
Michael G. Bosilovich Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Michael G. Bosilovich in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Components of the atmospheric energy budget from the Modern-Era Retrospective Analysis for Research and Applications (MERRA) are evaluated in polar regions for the period 1979–2005 and compared with previous estimates, in situ observations, and contemporary reanalyses. Closure of the budget is reflected by the analysis increments term, which indicates an energy surplus of 11 W m−2 over the North Polar cap (70°–90°N) and 22 W m−2 over the South Polar cap (70°–90°S). Total atmospheric energy convergence from MERRA compares favorably with previous studies for northern high latitudes but exceeds the available previous estimate for the South Polar cap by 46%. Discrepancies with the Southern Hemisphere energy transport are largest in autumn and may be related to differences in topography with earlier reanalyses. For the Arctic, differences between MERRA and other sources in top of atmosphere (TOA) and surface radiative fluxes are largest in May. These differences are concurrent with the largest discrepancies between MERRA parameterized and observed surface albedo. For May, in situ observations of the upwelling shortwave flux in the Arctic are 80 W m−2 larger than MERRA, while the MERRA downwelling longwave flux is underestimated by 12 W m−2 throughout the year. Over grounded ice sheets, the annual mean net surface energy flux in MERRA is erroneously nonzero. Contemporary reanalyses from the Climate Forecast Center (CFSR) and the Interim Re-Analyses of the European Centre for Medium-Range Weather Forecasts (ERA-I) are found to have better surface parameterizations; however, these reanalyses also disagree with observed surface and TOA energy fluxes. Discrepancies among available reanalyses underscore the challenge of reproducing credible estimates of the atmospheric energy budget in polar regions.

Corresponding author address: Richard Cullather, ℅ NASA/GSFC Code 610.1, 8800 Greenbelt Road, Greenbelt, MD 20771. E-mail: richard.cullather@nasa.gov

This article is included in the Modern Era Retrospective-Analysis for Research and Applications (MERRA) special collection.

This article is included in the CLIVAR/SeaFlux special collection.

Abstract

Components of the atmospheric energy budget from the Modern-Era Retrospective Analysis for Research and Applications (MERRA) are evaluated in polar regions for the period 1979–2005 and compared with previous estimates, in situ observations, and contemporary reanalyses. Closure of the budget is reflected by the analysis increments term, which indicates an energy surplus of 11 W m−2 over the North Polar cap (70°–90°N) and 22 W m−2 over the South Polar cap (70°–90°S). Total atmospheric energy convergence from MERRA compares favorably with previous studies for northern high latitudes but exceeds the available previous estimate for the South Polar cap by 46%. Discrepancies with the Southern Hemisphere energy transport are largest in autumn and may be related to differences in topography with earlier reanalyses. For the Arctic, differences between MERRA and other sources in top of atmosphere (TOA) and surface radiative fluxes are largest in May. These differences are concurrent with the largest discrepancies between MERRA parameterized and observed surface albedo. For May, in situ observations of the upwelling shortwave flux in the Arctic are 80 W m−2 larger than MERRA, while the MERRA downwelling longwave flux is underestimated by 12 W m−2 throughout the year. Over grounded ice sheets, the annual mean net surface energy flux in MERRA is erroneously nonzero. Contemporary reanalyses from the Climate Forecast Center (CFSR) and the Interim Re-Analyses of the European Centre for Medium-Range Weather Forecasts (ERA-I) are found to have better surface parameterizations; however, these reanalyses also disagree with observed surface and TOA energy fluxes. Discrepancies among available reanalyses underscore the challenge of reproducing credible estimates of the atmospheric energy budget in polar regions.

Corresponding author address: Richard Cullather, ℅ NASA/GSFC Code 610.1, 8800 Greenbelt Road, Greenbelt, MD 20771. E-mail: richard.cullather@nasa.gov

This article is included in the Modern Era Retrospective-Analysis for Research and Applications (MERRA) special collection.

This article is included in the CLIVAR/SeaFlux special collection.

Save
  • Barkstrom, B. R., 1984: The Earth Radiation Budget Experiment (ERBE). Bull. Amer. Meteor. Soc., 65, 11701185.

  • Bloom, S., L. Takacs, A. DaSilva, and D. Ledvina, 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124, 12561271.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., S. R. de Roode, C. Jakob, E. L Andreas, J. Intrieri, R. E. Moritz, and P. O. G. Persson, 2000: A comparison of the ECMWF forecast model with observations over the annual cycle at SHEBA. 46 pp. [Available online at http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.36.9608&rep=rep1&type=pdf.]

    • Search Google Scholar
    • Export Citation
  • Briegleb, B. P., and D. H. Bromwich, 1998: Polar climate simulations of the NCAR CCM3. J. Climate, 11, 12701286.

  • Carroll, J. J., 1982: Long-term means and short-term variability of the surface energy balance components at South Pole. J. Geophys. Res., 87, 42774286.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., 2000: Variability and trends in Antarctic surface temperatures from in situ and satellite infrared measurements. J. Climate, 13, 16741696.

    • Search Google Scholar
    • Export Citation
  • Cullather, R. I., and M. G. Bosilovich, 2011: The moisture budget of the polar atmosphere in MERRA. J. Climate, 24, 28612879.

  • Curry, J. A., J. L. Schramm, D. K. Perovich, and J. O. Pinto, 2001: Applications of SHEBA/FIRE data to evaluation of snow/ice albedo parameterizations. J. Geophys. Res., 106, 15 34515 355.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., 2005: Bias and data assimilation. Quart. J. Roy. Meteor. Soc., 131, 33233343.

  • Dorn, W., K. Dethloff, A. Rinke, S. Frickenhaus, R. Gerdes, M. Karcher, and F. Kauker, 2007: Sensitivities and uncertainties in a coupled regional atmosphere-ocean-ice model with respect to the simulation of Arctic sea ice. J. Geophys. Res., 112, D10118, doi:10.1029/2006JD007814.

    • Search Google Scholar
    • Export Citation
  • Dutton, E. G., R. S. Stone, and J. J. DeLuisi, 1989: South Pole surface radiation balance measurements, April 1986 to February 1988. NOAA ERL Air Resources Laboratory Data Rep. Series 17, 49 pp.

    • Search Google Scholar
    • Export Citation
  • Duynkerke, P., and S. de Roode, 2001: Surface energy balance and turbulence characteristics observed at the SHEBA Ice Camp during FIRE III. J. Geophys. Res., 106, 15 31315 322.

    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., and K. E. Trenberth, 2008: The annual cycle of the energy budget. Part I: Global mean and land–ocean exchanges. J. Climate, 21, 22972312.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., E. Hunter, and C.-Z. Zou, 2005: Arctic tropospheric winds derived from TOVS satellite retrievals. J. Climate, 18, 22702285.

    • Search Google Scholar
    • Export Citation
  • Genthon, C., and G. Krinner, 1998: Convergence and disposal of energy and moisture on the Antarctic polar cap from ECMWF reanalyses and forecasts. J. Climate, 11, 17031716.

    • Search Google Scholar
    • Export Citation
  • Gesch, D. B., 1994: Topographic data requirements for EOS global change research. Open-File Rep. 94-626, U.S. Geological Survey, 60 pp.

  • Gibson, J. K., P. Kållberg, S. Uppala, A. Hernandez, A. Nomura, and E. Serrano, 1997: ERA description. ECMWF Reanalysis Project Rep. Series 1, 72 pp.

    • Search Google Scholar
    • Export Citation
  • Glickman, T. S., Ed., 2000: Glossary of Meteorology. 2nd ed. Amer. Meteor. Soc., 855 pp.

  • Gorodetskaya, I. V., and L.-B. Tremblay, 2008: Arctic cloud properties and radiative forcing from observations and their role in sea ice decline predicted by the NCAR CCSM3 model during the 21st century. Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications, Geophys. Monogr., Vol. 180, Amer. Geophys. Union, 47–62.

    • Search Google Scholar
    • Export Citation
  • Inoue, J., J. Liu, J. O. Pinto, and J. A. Curry, 2006: Intercomparison of Arctic regional climate models: Modeling clouds and radiation for SHEBA in May 1998. J. Climate, 19, 41674178.

    • Search Google Scholar
    • Export Citation
  • Josey, S. A., 2009: Southern Ocean air-sea flux climatologies and uncertainties. Extended Abstracts, CLIVAR/CliC/SCAR Southern Ocean Region Implementation Panel Fifth Meeting, Sydney, NSW, Australia, CLIVAR, World Climate Research Programme, 26 pp. [Available online at http://www.clivar.org/organization/southern/sop5_talks.php.]

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437472.

  • King, J. C., and J. Turner, 1997: Antarctic Meteorology and Climatology. Cambridge University Press, 409 pp.

  • Koster, R. D., M. J. Suárez, A. Ducharne, M. Stieglitz, and P. Kumar, 2000: A catchment-based approach to modeling land surface processes in a GCM. Part 1: Model structure. J. Geophys. Res., 105, 24 80924 822.

    • Search Google Scholar
    • Export Citation
  • Langland, R. H., R. N. Maue, and C. H. Bishop, 2008: Uncertainty in atmospheric temperature analyses. Tellus, 60A, 598603.

  • Levitus, S., 1984: Annual cycle of temperature and heat storage in the world ocean. J. Phys. Oceanogr., 14, 727746.

  • Lin, B., P. Minnis, A. Fan, J. A. Curry, and H. Gerber, 2001: Comparison of cloud liquid water paths derived from in situ and microwave radiometer data taken during the SHEBA/FIREACE. Geophys. Res. Lett., 28, 975978.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., B. A. Wielicki, D. R. Doelling, G. L. Smith, D. F. Keyes, S. Kato, N. Manalo-Smith, and T. Wong, 2009: Toward optimal closure of the Earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748766.

    • Search Google Scholar
    • Export Citation
  • Moody, E. G., M. D. King, S. Platnick, C. B. Schaaf, and F. Gao, 2005: Spatially complete global spectral surface albedos: Value-added datasets derived from Terra MODIS land products. IEEE Trans. Geosci. Remote Sens., 43, 144158.

    • Search Google Scholar
    • Export Citation
  • Moore, J. K., M. R. Abbott, and J. G. Richman, 1999: Location and dynamics of the Antarctic Polar Front from satellite sea surface temperature data. J. Geophys. Res., 104, 30593073.

    • Search Google Scholar
    • Export Citation
  • Nakamura, N., and A. H. Oort, 1988: Atmospheric heat budgets of the polar regions. J. Geophys. Res., 93, 95109524.

  • Ohata, T., N. Ishikawa, S. Kobayashi, and S. Kawaguchi, 1985: Heat balance at the snow surface in a katabatic wind zone, East Antarctica. Ann. Glaciol., 6, 174177.

    • Search Google Scholar
    • Export Citation
  • Okada, I., and T. Yamanouchi, 2002: Seasonal change of the atmospheric heat budget over the Southern Ocean from ECMWF and ERBE data. J. Climate, 15, 25272536.

    • Search Google Scholar
    • Export Citation
  • Onogi, K., and Coauthors, 2007: The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85, 369432.

  • Oort, A. H., 1983: Global atmospheric circulation statistics, 1958-1973. NOAA Professional Paper 14, 180 pp. and 47 microfiche.

  • Perovich, D. K., T. C. Grenfell, J. A. Richter-Menge, B. Light, W. B. Tucker III, and H. Eicken, 2003: Thin and thinner: Sea ice mass balance measurements during SHEBA. J. Geophys. Res., 108, 8050, doi:10.1029/2001JC001079.

    • Search Google Scholar
    • Export Citation
  • Porter, D. F., J. J. Cassano, M. C. Serreze, and D. N. Kindig, 2010: New estimates of the large-scale Arctic atmosphere energy budget. J. Geophys. Res., 115, D08108, doi:10.1029/2009JD012653.

    • Search Google Scholar
    • Export Citation
  • Randall, D., and Coauthors, 1998: Status of and outlook for large-scale modeling of atmosphere–ice–ocean interactions in the Arctic. Bull. Amer. Meteor. Soc., 79, 197219.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., R. D. Koster, G. J. M. De Lannoy, B. A. Forman, Q. Liu, S. P. P. Mahanama, and A. Touré, 2011: Assessment and enhancement of MERRA land surface hydrology estimates. J. Climate, 24, 63226338.

    • Search Google Scholar
    • Export Citation
  • Reijmer, C. H., and J. Oerlemans, 2002: Temporal and spatial variability of the surface energy balance in Dronning Maud Land, East Antarctica. J. Geophys. Res., 107, 4759, doi:10.1029/2000JD000110.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2008: The GEOS-5 Data Assimilation System—Documentation of Versions 5.0.1, 5.1.0, and 5.2.0. Tech. Rep. Series on Global Modeling and Data Assimilation, M. J. Suarez, Ed., NASA/TM-2008-104606, Vol. 27, National Aeronautics and Space Administration Goddard Space Flight Center, 95 pp.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA–NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057.

  • Sedlacek, J., J.-F. Lemieux, L. A. Mysak, L. B. Tremblay, and D. M. Holland, 2007: The granular sea ice model in spherical coordinates and its application to a global climate model. J. Climate, 20, 59465961.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., A. P. Barrett, A. G. Slater, M. Steele, J. Zhang, and K. E. Trenberth, 2007: The large-scale energy budget of the Arctic. J. Geophys. Res., 112, D11122, doi:10.1029/2006JD008230.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., S. Uppala, D. Dee, and S. Kobayashi, 2007: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35.

    • Search Google Scholar
    • Export Citation
  • Sorteberg, A., and J. E. Walsh, 2008: Seasonal cyclone variability at 70°N and its impact on moisture transport into the Arctic. Tellus, 60A, 570586.

    • Search Google Scholar
    • Export Citation
  • Sorteberg, A., V. Kattsov, J. E. Walsh, and T. Pavlova, 2007: The Arctic surface energy budget as simulated with the IPCC AR4 AOGCMs. Climate Dyn., 29, 131156.

    • Search Google Scholar
    • Export Citation
  • Stieglitz, M., A. Ducharne, R. D. Koster, and M. J. Suarez, 2001: The impact of detailed snow physics on the simulation of snow cover and subsurface thermodynamics at continental scales. J. Hydrometeor., 2, 228242.

    • Search Google Scholar
    • Export Citation
  • Suarez, M., 2011: File specification for MERRA products. NASA Tech. Memo., 90 pp. [Available from Global Modeling and Assimilation Office, Earth Sciences Division, NASA Goddard Space Flight Center, NASA/GSFC Code 610.1, 8800 Greenbelt Road, Greenbelt, MD 20771.]

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: Using atmospheric budgets as a constraint on surface fluxes. J. Climate, 10, 27962809.

  • Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90, 311323.

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Uttal, T., and Coauthors, 2002: Surface heat budget of the Arctic Ocean. Bull. Amer. Meteor. Soc., 83, 255275.

  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth Observing System experiment. Bull. Amer. Meteor. Soc., 77, 853868.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1062 444 17
PDF Downloads 469 186 5