Long-Term Wind Speed Trends over Australia

Alberto Troccoli CSIRO Marine and Atmospheric Research, Canberra, Australian Capital Territory, Australia

Search for other papers by Alberto Troccoli in
Current site
Google Scholar
PubMed
Close
,
Karl Muller Monash University, Melbourne, Victoria, Australia

Search for other papers by Karl Muller in
Current site
Google Scholar
PubMed
Close
,
Peter Coppin CSIRO Marine and Atmospheric Research, Canberra, Australian Capital Territory, Australia

Search for other papers by Peter Coppin in
Current site
Google Scholar
PubMed
Close
,
Robert Davy CSIRO Marine and Atmospheric Research, Canberra, Australian Capital Territory, Australia

Search for other papers by Robert Davy in
Current site
Google Scholar
PubMed
Close
,
Chris Russell CSIRO Marine and Atmospheric Research, Canberra, Australian Capital Territory, Australia

Search for other papers by Chris Russell in
Current site
Google Scholar
PubMed
Close
, and
Annette L. Hirsch CSIRO Marine and Atmospheric Research, Canberra, Australian Capital Territory, Australia

Search for other papers by Annette L. Hirsch in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Accurate estimates of long-term linear trends of wind speed provide a useful indicator for circulation changes in the atmosphere and are invaluable for the planning and financing of sectors such as wind energy. Here a large number of wind observations over Australia and reanalysis products are analyzed to compute such trends. After a thorough quality control of the observations, it is found that the wind speed trends for 1975–2006 and 1989–2006 over Australia are sensitive to the height of the station: they are largely negative for the 2-m data but are predominantly positive for the 10-m data. The mean relative trend at 2 m is −0.10 ± 0.03% yr−1 (−0.36 ± 0.04% yr−1) for the 1975–2006 (1989–2006) period, whereas at 10 m it is 0.90 ± 0.03% yr−1 (0.69 ± 0.04% yr−1) for the 1975–2006 (1989–2006) period. Also, at 10 m light winds tend to increase more rapidly than the mean winds, whereas strong winds increase less rapidly than the mean winds; at 2 m the trends in both light and strong winds vary in line with the mean winds. It was found that a qualitative link could be established between the observed features in the linear trends and some atmospheric circulation indicators (mean sea level pressure, wind speed at 850 hPa, and geopotential at 850 hPa), particularly for the 10-m observations. Further, the magnitude of the trend is also sensitive to the period selected, being closer to zero when a very long period, 1948–2006, is considered. As a consequence, changes in the atmospheric circulation on climatic time scales appear unlikely.

Corresponding author address: Dr. Alberto Troccoli, Pye Laboratory, CSIRO Marine and Atmospheric Research, Black Mountain, GPO Box 3023, Canberra ACT 2601, Australia. E-mail: alberto.troccoli@csiro.au

Abstract

Accurate estimates of long-term linear trends of wind speed provide a useful indicator for circulation changes in the atmosphere and are invaluable for the planning and financing of sectors such as wind energy. Here a large number of wind observations over Australia and reanalysis products are analyzed to compute such trends. After a thorough quality control of the observations, it is found that the wind speed trends for 1975–2006 and 1989–2006 over Australia are sensitive to the height of the station: they are largely negative for the 2-m data but are predominantly positive for the 10-m data. The mean relative trend at 2 m is −0.10 ± 0.03% yr−1 (−0.36 ± 0.04% yr−1) for the 1975–2006 (1989–2006) period, whereas at 10 m it is 0.90 ± 0.03% yr−1 (0.69 ± 0.04% yr−1) for the 1975–2006 (1989–2006) period. Also, at 10 m light winds tend to increase more rapidly than the mean winds, whereas strong winds increase less rapidly than the mean winds; at 2 m the trends in both light and strong winds vary in line with the mean winds. It was found that a qualitative link could be established between the observed features in the linear trends and some atmospheric circulation indicators (mean sea level pressure, wind speed at 850 hPa, and geopotential at 850 hPa), particularly for the 10-m observations. Further, the magnitude of the trend is also sensitive to the period selected, being closer to zero when a very long period, 1948–2006, is considered. As a consequence, changes in the atmospheric circulation on climatic time scales appear unlikely.

Corresponding author address: Dr. Alberto Troccoli, Pye Laboratory, CSIRO Marine and Atmospheric Research, Black Mountain, GPO Box 3023, Canberra ACT 2601, Australia. E-mail: alberto.troccoli@csiro.au
Save
  • Archer, C. L., and K. Caldeira, 2008: Historical trends in the jet streams. Geophys. Res. Lett., 35, L08803, doi:10.1029/2008GL033614.

  • Berrisford, P., D. Dee, K. Fielding, M. Fuentes, P. Kållberg, S. Kobayashi, and S. Uppala, 2009: The ERA-Interim archive, version 1.0. ECMWF ERA Rep. Series 1, 20 pp. [Available online at http://www.ecmwf.int/publications/library/ecpublications/_pdf/era/era_report_series/RS_1.pdf.]

    • Search Google Scholar
    • Export Citation
  • Crosman, E. T., and J. D. Horel, 2010: Sea and lake breezes: A review of numerical studies. Bound.-Layer Meteor., 137, 129, doi:10.1007/s10546-010-9517-9.

    • Search Google Scholar
    • Export Citation
  • Guo, H., M. Xu, and Q. Hu, 2010: Changes in near-surface wind speed in China: 1969–2005. Int. J. Climatol., 31, 349358, doi:10.1002/joc.2091.

    • Search Google Scholar
    • Export Citation
  • Jakob, D., 2010: Challenges in developing a high-quality surface wind-speed data-set for Australia. Aust. Meteor. Oceanogr. J., 60, 227236.

    • Search Google Scholar
    • Export Citation
  • Jiang, Y., Y. Luo, Z. Zhao, and S. Tao, 2010: Changes in wind speed over China during 1956–2004. Theor. Appl. Climatol., 99, 421430, doi:10.1007/s00704-009-0152-7.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • McVicar, T. R., T. G. Van Niel, L. T. Li, M. L. Roderick, D. P. Rayner, L. Ricciardulli, and R. J. Donohue, 2008: Wind speed climatology and trends for Australia, 1975–2006: Capturing the stilling phenomenon and comparison with near-surface reanalysis output. Geophys. Res. Lett., 35, L20403, doi:10.1029/2008GL035627.

    • Search Google Scholar
    • Export Citation
  • Muirhead, I. J., 2000: Applications for climate data in renewable energy. Proc. ANZSES Solar 2000 Conf., Brisbane, QLD, Australia, Australian and New Zealand Solar Energy Society.

    • Search Google Scholar
    • Export Citation
  • Onogi, K., and Coauthors, 2007: The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85, 369432.

  • Pirazzoli, P. A., and A. Tomasin, 2003: Recent near-surface wind changes in the central Mediterranean and Adriatic areas. Int. J. Climatol., 23, 963973.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., and J. Ledolter, 2010: Addendum to “Wind speed trends over the contiguous United States.” J. Geophys. Res., 115, D10103, doi:10.1029/2009JD013281.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., and Coauthors, 2009: Wind speed trends over the contiguous United States. J. Geophys. Res., 114, D14105, doi:10.1029/2008JD011416.

    • Search Google Scholar
    • Export Citation
  • Roderick, M. L., L. D. Rotstayn, G. D. Farquhar, and M. T. Hobbins, 2007: On the attribution of changing pan evaporation. Geophys. Res. Lett., 34, L17403, doi:10.1029/2007GL031166.

    • Search Google Scholar
    • Export Citation
  • Vautard R., J. Cattiaux, P. Yiou, J.-N. Thépaut, and P. Ciais, 2010: Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat. Geosci., 3, 756761, doi:10.1038/ngeo979.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3046 992 53
PDF Downloads 1542 428 24