Probability Distribution Characteristics for Surface Air–Sea Turbulent Heat Fluxes over the Global Ocean

Sergey K. Gulev P. P. Shirshov Institute of Oceanology, and Moscow State University, Moscow, Russia, and Institut für Meereskunde-GEOMAR, Kiel, Germany

Search for other papers by Sergey K. Gulev in
Current site
Google Scholar
PubMed
Close
and
Konstantin Belyaev P. P. Shirshov Institute of Oceanology, Moscow, Russia, and Department of Mathematics, University of Bahia, Salvador, Brazil

Search for other papers by Konstantin Belyaev in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

To analyze the probability density distributions of surface turbulent heat fluxes, the authors apply the two-parametric modified Fisher–Tippett (MFT) distribution to the sensible and latent turbulent heat fluxes recomputed from 6-hourly NCEP–NCAR reanalysis state variables for the period from 1948 to 2008. They derived the mean climatology and seasonal cycle of the location and scale parameters of the MFT distribution. Analysis of the parameters of probability distributions identified the areas where similar surface turbulent fluxes are determined by the very different shape of probability density functions. Estimated extreme turbulent heat fluxes amount to 1500–2000 W m−2 (for the 99th percentile) and can exceed 2000 W m−2 for higher percentiles in the subpolar latitudes and western boundary current regions. Analysis of linear trends and interannual variability in the mean and extreme fluxes shows that the strongest trends in extreme fluxes (more than 15 W m−2 decade−1) in the western boundary current regions are associated with the changes in the shape of distribution. In many regions changes in extreme fluxes may be different from those for the mean fluxes at interannual and decadal time scales. The correlation between interannual variability of the mean and extreme fluxes is relatively low in the tropics, the Southern Ocean, and the Kuroshio Extension region. Analysis of probability distributions in turbulent fluxes has also been used in assessing the impact of sampling errors in the Voluntary Observing Ship (VOS)-based surface flux climatologies, allowed for the estimation of the impact of sampling in extreme fluxes. Although sampling does not have a visible systematic effect on mean fluxes, sampling uncertainties result in the underestimation of extreme flux values exceeding 100 W m−2 in poorly sampled regions.

Corresponding author address: Sergey Gulev, P. P. Shirshov Institute of Oceanology, Russian Academy of Sciences, 36 Nakhimovsky Ave., 117997 Moscow, Russia. E-mail: gul@sail.msk.ru

Abstract

To analyze the probability density distributions of surface turbulent heat fluxes, the authors apply the two-parametric modified Fisher–Tippett (MFT) distribution to the sensible and latent turbulent heat fluxes recomputed from 6-hourly NCEP–NCAR reanalysis state variables for the period from 1948 to 2008. They derived the mean climatology and seasonal cycle of the location and scale parameters of the MFT distribution. Analysis of the parameters of probability distributions identified the areas where similar surface turbulent fluxes are determined by the very different shape of probability density functions. Estimated extreme turbulent heat fluxes amount to 1500–2000 W m−2 (for the 99th percentile) and can exceed 2000 W m−2 for higher percentiles in the subpolar latitudes and western boundary current regions. Analysis of linear trends and interannual variability in the mean and extreme fluxes shows that the strongest trends in extreme fluxes (more than 15 W m−2 decade−1) in the western boundary current regions are associated with the changes in the shape of distribution. In many regions changes in extreme fluxes may be different from those for the mean fluxes at interannual and decadal time scales. The correlation between interannual variability of the mean and extreme fluxes is relatively low in the tropics, the Southern Ocean, and the Kuroshio Extension region. Analysis of probability distributions in turbulent fluxes has also been used in assessing the impact of sampling errors in the Voluntary Observing Ship (VOS)-based surface flux climatologies, allowed for the estimation of the impact of sampling in extreme fluxes. Although sampling does not have a visible systematic effect on mean fluxes, sampling uncertainties result in the underestimation of extreme flux values exceeding 100 W m−2 in poorly sampled regions.

Corresponding author address: Sergey Gulev, P. P. Shirshov Institute of Oceanology, Russian Academy of Sciences, 36 Nakhimovsky Ave., 117997 Moscow, Russia. E-mail: gul@sail.msk.ru
Save
  • Akima, H., 1970: A new method of interpolation and smooth curve fitting based on local procedures. J. Assoc. Comput. Mach., 17, 589602.

    • Search Google Scholar
    • Export Citation
  • Andersson, A., C. Klepp, K. Fennig, S. Bakan, H. Grassl, and J. Schulz, 2011: Evaluation of HOAPS-3 ocean surface freshwater flux components. J. Appl. Meteor. Climatol., 50, 379398.

    • Search Google Scholar
    • Export Citation
  • Bazant, M. Z., 2000: Largest cluster in subcritical percolation. Phys. Rev. E, 62, 16601669.

  • Bedacht, E., S. K. Gulev, and A. Macke, 2007: Intercomparison of global cloud cover fields over oceans from the VOS observations and NCEP/NCAR reanalysis. Int. J. Climatol., 27, 17071719, doi:10.1002/joc.1490.

    • Search Google Scholar
    • Export Citation
  • Bentamy, A., K. B. Katsaros, A. M. Mestas-Nuñez, W. M. Drennan, E. B. Forde, and H. Roquet, 2003: Satellite estimates of wind speed and latent heat flux over the global oceans. J. Climate, 16, 637656.

    • Search Google Scholar
    • Export Citation
  • Berry, D. I., and E. C. Kent, 2009: A new air–sea interaction gridded dataset from ICOADS with uncertainty estimates. Bull. Amer. Meteor. Soc., 90, 645656.

    • Search Google Scholar
    • Export Citation
  • Besset, D. H., 2001: Object-Oriented Implementation of Numerical Methods: An Introduction with Java and Smalltalk. Morgan Kaufmann Publishers, 766 pp.

    • Search Google Scholar
    • Export Citation
  • Bhavsar, S. P., and J. D. Barrow, 1985: First ranked galaxies in groups and clusters. Mon. Not. Roy. Astron. Soc., 213, 857869.

  • Bond, N. A., and M. F. Cronin, 2008: Regional weather patterns during anomalous air–sea fluxes at the Kuroshio Extension Observatory (KEO). J. Climate, 21, 16801697.

    • Search Google Scholar
    • Export Citation
  • Bond, N. A., M. F. Cronin, and M. Garvert, 2010: Atmospheric sensitivity to SST near the Kuroshio Extension during the extratropical transition of Typhoon Tokage. Mon. Wea. Rev., 138, 26442663.

    • Search Google Scholar
    • Export Citation
  • Borowkov, A. A., 1984: Mathematical Statistics. Nauka, 472 pp.

  • Bouras, D., 2006: Comparison of five satellite-derived latent heat flux products to moored buoy data. J. Climate, 19, 62916313.

  • Bourassa, M., and S. Gille, 2008: US CLIVAR Working Group on high latitude surface fluxes. Variations, 6 (1), 811.

  • Brohan, P., J. Kennedy, I. Harris, S. F. B. Tett, and P. D. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: A new dataset from 1850. J. Geophys. Res., 111, D12106, doi:10.1029/2005JD006548.

    • Search Google Scholar
    • Export Citation
  • Brunke, M. A., C. W. Fairall, X. Zeng, L. Eymard, and J. A. Curry, 2003: Which bulk aerodynamic algorithms are least problematic in computing ocean surface turbulent fluxes? J. Climate, 16, 619635.

    • Search Google Scholar
    • Export Citation
  • Cayan, D., 1992: Variability of latent and sensible heat fluxes estimated using bulk formulae. Atmos.–Ocean, 30, 142.

  • Chang, E. K. M., 2005: Effects of secular changes in frequency of observations and observational errors on monthly mean MSLP summary statistics derived from ICOADS. J. Climate, 18, 36233633.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 2007: Assessing the increasing trend in Northern Hemisphere winter storm track activity using surface ship observations and a statistical storm track model. J. Climate, 20, 56075628.

    • Search Google Scholar
    • Export Citation
  • Chou, S. H., E. Nelkin, J. Ardizzone, and R. M. Atlas, 2004: A comparison of latent heat fluxes over global oceans for four flux products. J. Climate, 17, 39733989.

    • Search Google Scholar
    • Export Citation
  • Coles, S. G., 1989: On goodness-of-fit tests for the two-parameter Weibull distribution derived from stabilized probability plot. Biometrika, 76, 593598.

    • Search Google Scholar
    • Export Citation
  • D’Agostino, R. B., and M. A. Stephens, Eds.,1986: Goodness-of-Fit Techniques. Statistics: Textbooks and Monographs, Vol. 68, Marcel Dekker, 560 pp.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradly, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591.

    • Search Google Scholar
    • Export Citation
  • Gleckler, P., and B. Weare, 1997: Uncertainties in global ocean surface heat flux climatologies derived from ship observations. J. Climate, 10, 27642781.

    • Search Google Scholar
    • Export Citation
  • Grist, J. R., and S. A. Josey, 2003: Inverse analysis adjustment of the SOC air–sea flux climatology using ocean heat transport constraints. J. Climate, 16, 32743295.

    • Search Google Scholar
    • Export Citation
  • Grodsky, S. A., A. Bentamy, J. A. Carton, and R. T. Pinker, 2009: Intraseasonal latent heat flux based on satellite observations. J. Climate, 22, 45394556.

    • Search Google Scholar
    • Export Citation
  • Gulev, S. K., V. Grigorieva, A. Sterl, and D. Woolf, 2003: Assessment of the reliability of wave observations from voluntary observing ships: Insights from the validation of a global wind wave climatology based on voluntary observing ship data. J. Geophys. Res., 108, 3236, doi:10.1029/2002JC001437.

    • Search Google Scholar
    • Export Citation
  • Gulev, S. K., T. Jung, and E. Ruprecht, 2007a: Estimation of the impact of sampling errors in the VOS observations on air–sea fluxes. Part I: Uncertainties in climate means. J. Climate, 20, 279301.

    • Search Google Scholar
    • Export Citation
  • Gulev, S. K., T. Jung, and E. Ruprecht, 2007b: Estimation of the impact of sampling errors in the VOS observations on air–sea fluxes. Part II: Impact on trends and interannual variability. J. Climate, 20, 302315.

    • Search Google Scholar
    • Export Citation
  • Gulev, S. K., and Coauthors, 2010: Surface energy, CO2 fluxes and sea ice. Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society, Vol. 1, J. Hall, D. E. Harrison, and D. Stammer, Eds., ESA Publ. WPP-306, 19 pp.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., 1982: Confidence intervals of a climatic signal. J. Atmos. Sci., 39, 18951905.

  • Isemer, H.-J., and L. Hasse, 1991: The scientific Beaufort equivalent scale: Effects on wind statistics and climatological air–sea flux estimates in the North Atlantic Ocean. J. Climate, 4, 819836.

    • Search Google Scholar
    • Export Citation
  • Josey, S. A., 2001: A comparison of ECMWF, NCEP–NCAR, and SOC surface heat fluxes with moored buoy measurements in the subduction region of the northeast Atlantic. J. Climate, 14, 17801789.

    • Search Google Scholar
    • Export Citation
  • Josey, S. A., E. C. Kent, and P. K. Taylor, 1999: New insights into the ocean heat budget closure problem from analysis of the SOC air–sea flux climatology. J. Climate, 12, 28562880.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kaplan, A., M. A. Cane, and Y. Kushnir, 2003: Reduced space approach to the optimal analysis of historical marine observations: Accomplishments, difficulties, and prospects. Advances in the applications of marine climatology: The dynamic part of the WMO guide to the applications of marine meteorology, WMO Tech. Doc. WMO/TD-1081, JCOMM Tech. Rep. 13, 199–216.

    • Search Google Scholar
    • Export Citation
  • Kent, E. C., and D. I. Berry, 2005: Quantifying random measurement errors in voluntary observing ships’ meteorological observations. Int. J. Climatol., 25, 843856, doi:10.1002/joc.1167.

    • Search Google Scholar
    • Export Citation
  • Kent, E. C., P. K. Taylor, and P. Challenor, 2000: The effect of successive correction on variability estimates for climatological datasets. J. Climate, 13, 18451857.

    • Search Google Scholar
    • Export Citation
  • Kent, E. C., S. D. Woodruff, and D. I. Berry, 2007: Metadata from WMO Publication No. 47 and an assessment of Voluntary Observing Ship observation heights in ICOADS. J. Atmos. Oceanic Technol., 24, 214234.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247267.

    • Search Google Scholar
    • Export Citation
  • Konda, M., H. Ichikawa, H. Tomita, and M. F. Cronin, 2010: Surface heat flux variations across the Kuroshio Extension as observed by surface flux buoys. J. Climate, 23, 52065221.

    • Search Google Scholar
    • Export Citation
  • Kubota, M., A. Kano, H. Muramatsu, and H. Tomita, 2003: Intercomparison of various surface latent heat flux fields. J. Climate, 16, 670678.

    • Search Google Scholar
    • Export Citation
  • Kubota, M., N. Iwabe, M. F. Cronin, and H. Tomita, 2008: Surface heat fluxes from the NCEP/NCAR and NCEP/DOE reanalyses at the Kuroshio Extension Observatory buoy site. J. Geophys. Res., 113, C02009, doi:10.1029/2007JC004338.

    • Search Google Scholar
    • Export Citation
  • LabSea Group, 1998: The Labrador Sea Deep Convection Experiment. Bull. Amer. Meteor. Soc., 79, 20332058.

  • Large, W. G., and S. G. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, doi:10.1007/s00382-008-0441-3.

    • Search Google Scholar
    • Export Citation
  • Legler, D., 1991: Errors in five-day mean surface wind and temperature conditions due to inadequate sampling. J. Atmos. Oceanic Technol., 8, 705712.

    • Search Google Scholar
    • Export Citation
  • Lehmann, E. L., and J. P. Romano, 2005: Testing Statistical Hypotheses. 3rd ed. Springer, 784 pp.

  • Littell, R. C., J. T. McClave, and W. W. Offen, 1979: Goodness-of-fit tests for the two parameter Weibull distribution. Commun. Stat., 8B, 257269.

    • Search Google Scholar
    • Export Citation
  • Liu, J., and J. A. Curry, 2006: Variability of the tropical and subtropical ocean surface latent heat flux during 1989–2000. Geophys. Res. Lett., 33, L05706, doi:10.1029/2005GL024809.

    • Search Google Scholar
    • Export Citation
  • Lo, A. K., and G. A. McBean, 1978: On the relative errors in methods of flux calculations. J. Appl. Meteor., 17, 17041711.

  • Michael, J. R., 1983: The stabilized probability plot. Biometrika, 70, 1117.

  • Monahan, A. H., 2006a: The probability distribution of sea surface wind speeds. Part I: Theory and sea winds observations. J. Climate, 19, 497520.

    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., 2006b: The probability distribution of sea surface wind speeds. Part II: Dataset intercomparison and seasonal variability. J. Climate, 19, 521534.

    • Search Google Scholar
    • Export Citation
  • Monahan, A. H., 2007: Empirical models of the probability distribution of sea surface wind speeds. J. Climate, 20, 57985814.

  • Moore, G. W. K., and I. A. Renfrew, 2002: An assessment of the surface turbulent heat fluxes from the NCEP–NCAR reanalysis over the western boundary currents. J. Climate, 15, 20202037.

    • Search Google Scholar
    • Export Citation
  • Morrissey, M. L., A. Albers, J. S. Greene, and S. Postawko, 2010: An isofactorial change-of-scale model for the wind speed probability density function. J. Atmos. Oceanic Technol., 27, 257273.

    • Search Google Scholar
    • Export Citation
  • Pearson, E. S., and H. O. Hartley, Eds., 1976: Biometrika Tables for Statisticians. Vol. 2. Biometrika Trust, 226 pp.

  • Ramesh Kumar, M. R., S. Sankar, K. Fennig, D. S. Pai, and J. Schulz, 2005: Air-sea interaction over the Indian Ocean during the contrasting monsoon years 2002 and 2003. Geophys. Res. Lett., 32, L14821, doi:10.1029/2005GL022587.

    • Search Google Scholar
    • Export Citation
  • Ramesh Kumar, M. R., R. Krishnan, S. Sankar, A. S. Unnikrishnan, and D. S. Pai, 2009: Increasing trend of “break-monsoon” conditions over India—Role of ocean–atmosphere processes in the Indian Ocean. IEEE Geosci. Remote Sens. Lett., 6, 332336.

    • Search Google Scholar
    • Export Citation
  • Renfrew, I. A., G. W. K. Moore, P. S. Guest, and K. Bumke, 2002: A comparison of surface layer and surface turbulent flux observations over the Labrador Sea with ECMWF analyses and NCEP reanalyses. J. Phys. Oceanogr., 32, 383400.

    • Search Google Scholar
    • Export Citation
  • Romanou, A., W. B. Rossow, and S.-H. Chou, 2006: Decorrelation scales of high-resolution turbulent fluxes at the ocean surface and a method to fill in gaps in satellite data products. J. Climate, 19, 33783393.

    • Search Google Scholar
    • Export Citation
  • Rouault, M., C. J. C. Reason, J. R. E. Lutjeharms, and A. C. M. Beljaars, 2003: Underestimation of latent and sensible heat fluxes above the Agulhas Current in NCEP and ECMWF analyses. J. Climate, 16, 776782.

    • Search Google Scholar
    • Export Citation
  • Rudeva, I. A., and S. K. Gulev, 2011: Composite analysis of North Atlantic extratropical cyclones in NCEP–NCAR reanalysis data. Mon. Wea. Rev., 139, 14191446.

    • Search Google Scholar
    • Export Citation
  • Sayama, S., and H. Sekine, 2001: Weibull, log-Weibull and K-distributed ground clutter modeling analyzed by AIC. IEEE Trans. Aerosp. Electron. Syst., 37, 11081113.

    • Search Google Scholar
    • Export Citation
  • Schenkel, B., and R. Hart, 2012: An examination of tropical cyclone position and intensity differences within atmospheric reanalysis datasets. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Shaman, J., R. M. Samelson, and E. Skyllingstad, 2010: Air–sea fluxes over the Gulf Stream region: Atmospheric controls and trends. J. Climate, 23, 26512670.

    • Search Google Scholar
    • Export Citation
  • Smith, S. R., D. M. Legler, and K. V. Verzone, 2001: Quantifying uncertainties in NCEP reanalyses using high-quality research vessel observations. J. Climate, 14, 40624072.

    • Search Google Scholar
    • Export Citation
  • Smith, S. R., P. J. Hughes, and M. A. Bourassa, 2011: A comparison of nine monthly air–sea flux products. Int. J. Climatol., 31, 10021027, doi:10.1002/joc.2225.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and R. W. Reynolds, 2004: Improved extended reconstruction of SST (1854–1997). J. Climate, 17, 24662477.

  • Sterl, A., 2001: On the accuracy of gap-filling algorithms in global surface fields. Geophys. Res. Lett., 28, 24732476.

  • Sterl, A., 2004: On the (in)homogeneity of reanalysis products. J. Climate, 17, 38663873.

  • Tomita, H., M. Kubota, M. F. Cronin, S. Iwasaki, M. Konda, and H. Ichikawa, 2010: An assessment of surface heat fluxes from J-OFURO2 at the KEO and JKEO sites. J. Geophys. Res., 115, C03018, doi:10.1029/2009JC005545.

    • Search Google Scholar
    • Export Citation
  • Weare, B. C., 1989: Uncertainties in estimates of surface heat fluxes derived from marine reports over the tropical and subtropical oceans. Tellus, 41A, 357370.

    • Search Google Scholar
    • Export Citation
  • Weare, B. C., and P. T. Strub, 1981: The significance of sampling biases on calculated monthly mean oceanic surface heat fluxes. Tellus, 33, 211224.

    • Search Google Scholar
    • Export Citation
  • WGASF Group, 2000: Intercomparison and validation of ocean-atmosphere energy flux fields. Final Rep. of the Joint WCRP/SCOR Working Group on Air-Sea Fluxes (SCOR Working Group 110), P. K. Taylor, Ed., WMO/TD-1036, WCRP Rep. 112, 305 pp. [Available online at http://www.noc.soton.ac.uk/ooc/WGASF/get_report.html.]

    • Search Google Scholar
    • Export Citation
  • White, G. H., 2000: Long-term trends in the NCEP/NCAR reanalysis. Proc. Second Int. Conf. on Reanalyses, Reading, United Kingdom, ECMWF, WCRP-109, WMO Tech. Doc. WMO/TD-985, 54–57.

    • Search Google Scholar
    • Export Citation
  • Woodruff, S. D., and Coauthors, 2011: ICOADS release 2.5: Extensions and enhancements to the surface marine meteorological archive. Int. J. Climatol., 31, 951967, doi:10.1002/joc.2103.

    • Search Google Scholar
    • Export Citation
  • Worley, S. J., S. D. Woodruff, R. W. Reynolds, S. J. Lubker, and N. Lott, 2005: ICOADS release 2.1 data and products. Int. J. Climatol., 25, 823842, doi:10.1002/joc.1166.

    • Search Google Scholar
    • Export Citation
  • Wright, D. G., and K. R. Thompson, 1983: Time-averaged forms of the nonlinear stress law. J. Phys. Oceanogr., 13, 341345.

  • Yau, M. K., and M. Jean, 1989: Synoptic aspects and physical processes in the rapidly intensifying cyclone of 6–8 March 1986. Atmos.–Ocean, 27, 5986.

    • Search Google Scholar
    • Export Citation
  • Yu, L., 2007: Global variations in oceanic evaporation (1958–2005): The role of the changing wind speed. J. Climate, 20, 53765390.

  • Yu, L., and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527539.

    • Search Google Scholar
    • Export Citation
  • Yu, L., R. A. Weller, and B. Sun, 2004a: Improving latent and sensible heat flux estimates for the Atlantic Ocean (1988–99) by a synthesis approach. J. Climate, 17, 373393.

    • Search Google Scholar
    • Export Citation
  • Yu, L., R. A. Weller, and B. Sun, 2004b: Mean and variability of the WHOI daily latent and sensible heat fluxes at in situ flux measurement sites in the Atlantic Ocean. J. Climate, 17, 20962118.

    • Search Google Scholar
    • Export Citation
  • Zolina, O., and S. K. Gulev, 2003: Synoptic variability of ocean–atmosphere turbulent fluxes associated with atmospheric cyclones. J. Climate, 16, 27172734.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 642 173 18
PDF Downloads 582 133 14