Seasonal Evolutions of Atmospheric Response to Decadal SST Anomalies in the North Pacific Subarctic Frontal Zone: Observations and a Coupled Model Simulation

Bunmei Taguchi * Earth Simulator Center, JAMSTEC, Yokohama, Japan

Search for other papers by Bunmei Taguchi in
Current site
Google Scholar
PubMed
Close
,
Hisashi Nakamura Department of Earth and Planetary Science, University of Tokyo, Tokyo, and Research Institute for Global Change, JAMSTEC, Yokohama, Japan

Search for other papers by Hisashi Nakamura in
Current site
Google Scholar
PubMed
Close
,
Masami Nonaka Research Institute for Global Change, JAMSTEC, Yokohama, Japan

Search for other papers by Masami Nonaka in
Current site
Google Scholar
PubMed
Close
,
Nobumasa Komori * Earth Simulator Center, JAMSTEC, Yokohama, Japan

Search for other papers by Nobumasa Komori in
Current site
Google Scholar
PubMed
Close
,
Akira Kuwano-Yoshida * Earth Simulator Center, JAMSTEC, Yokohama, Japan

Search for other papers by Akira Kuwano-Yoshida in
Current site
Google Scholar
PubMed
Close
,
Koutarou Takaya Research Institute for Global Change, JAMSTEC, Yokohama, Japan

Search for other papers by Koutarou Takaya in
Current site
Google Scholar
PubMed
Close
, and
Atsushi Goto Office of International Affairs, Japan Meteorological Agency, Tokyo, Japan

Search for other papers by Atsushi Goto in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Potential impacts of pronounced decadal-scale variations in the North Pacific sea surface temperature (SST) that tend to be confined to the subarctic frontal zone (SAFZ) upon seasonally varying atmospheric states are investigated, by using 48-yr observational data and a 120-yr simulation with an ocean–atmosphere coupled general circulation model (CGCM). SST fields based on in situ observations and the ocean component of the CGCM have horizontal resolutions of 2.0° and 0.5°, respectively, which can reasonably resolve frontal SST gradient across the SAFZ. Both the observations and CGCM simulation provide a consistent picture between SST anomalies in the SAFZ yielded by its decadal-scale meridional displacement and their association with atmospheric anomalies. Correlated with SST anomalies persistent in the SAFZ from fall to winter, a coherent decadal-scale signal in the wintertime atmospheric circulation over the North Pacific starts emerging in November and develops into an equivalent barotropic anomaly pattern similar to the Pacific–North American (PNA) pattern. The PNA-like signal with the weakened (enhanced) surface Aleutian low correlated with positive (negative) SST anomalies in the SAFZ becomes strongest and most robust in January, under the feedback forcing from synoptic-scale disturbances migrating along the Pacific storm track that shifts northward (southward) in accord with the oceanic SAFZ. This PNA-like signal, however, breaks down in February, which is suggestive of a particular sensitivity of that anomaly pattern to subtle differences in the background climatological-mean state. Despite its collapse in February, the PNA-like signal recurs the next January. This subseasonal evolution of the signal suggests that the PNA-like anomaly pattern may develop as a response to the persistent SST anomalies that are maintained mainly through ocean dynamics.

Current affiliation: Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan.

Corresponding author address: Bunmei Taguchi, Earth Simulator Center, Japan Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-Ku, Yokohama, Kanagawa 236-0001, Japan. E-mail: bunmei@jamstec.go.jp

Abstract

Potential impacts of pronounced decadal-scale variations in the North Pacific sea surface temperature (SST) that tend to be confined to the subarctic frontal zone (SAFZ) upon seasonally varying atmospheric states are investigated, by using 48-yr observational data and a 120-yr simulation with an ocean–atmosphere coupled general circulation model (CGCM). SST fields based on in situ observations and the ocean component of the CGCM have horizontal resolutions of 2.0° and 0.5°, respectively, which can reasonably resolve frontal SST gradient across the SAFZ. Both the observations and CGCM simulation provide a consistent picture between SST anomalies in the SAFZ yielded by its decadal-scale meridional displacement and their association with atmospheric anomalies. Correlated with SST anomalies persistent in the SAFZ from fall to winter, a coherent decadal-scale signal in the wintertime atmospheric circulation over the North Pacific starts emerging in November and develops into an equivalent barotropic anomaly pattern similar to the Pacific–North American (PNA) pattern. The PNA-like signal with the weakened (enhanced) surface Aleutian low correlated with positive (negative) SST anomalies in the SAFZ becomes strongest and most robust in January, under the feedback forcing from synoptic-scale disturbances migrating along the Pacific storm track that shifts northward (southward) in accord with the oceanic SAFZ. This PNA-like signal, however, breaks down in February, which is suggestive of a particular sensitivity of that anomaly pattern to subtle differences in the background climatological-mean state. Despite its collapse in February, the PNA-like signal recurs the next January. This subseasonal evolution of the signal suggests that the PNA-like anomaly pattern may develop as a response to the persistent SST anomalies that are maintained mainly through ocean dynamics.

Current affiliation: Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan.

Corresponding author address: Bunmei Taguchi, Earth Simulator Center, Japan Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-Ku, Yokohama, Kanagawa 236-0001, Japan. E-mail: bunmei@jamstec.go.jp
Save
  • Alexander, M. A., and C. Deser, 1995: A mechanism for the recurrence of wintertime midlatitude SST anomalies. J. Phys. Oceanogr., 25, 122137.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., C. Deser, and M. S. Timlin, 1999: The re-emergence of SST anomalies in the North Pacific Ocean. J. Climate, 12, 24192431.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., I. Blade, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231.

    • Search Google Scholar
    • Export Citation
  • Bond, N. A., and M. F. Cronin, 2008: Regional weather patterns during anomalous air–sea fluxes at the Kuroshio Extension Observatory (KEO). J. Climate, 21, 16801697.

    • Search Google Scholar
    • Export Citation
  • Brayshaw, D. J., B. J. Hoskins, and M. Blackburn, 2008: The storm-track response to idealized SST perturbations in an aquaplanet GCM. J. Atmos. Sci., 65, 28422860.

    • Search Google Scholar
    • Export Citation
  • Brayshaw, D. J., B. J. Hoskins, and M. Blackburn, 2009: The basic ingredients of the North Atlantic storm track. Part I: Land–sea contrast and orography. J. Atmos. Sci., 66, 25392558.

    • Search Google Scholar
    • Export Citation
  • Deser, C., R. Tomas, and S. Peng, 2007: The transient atmospheric circulation response to North Atlantic SST and sea ice anomalies. J. Climate, 20, 47514767.

    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., and Coauthors, 2008: North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophys. Res. Lett., 35, L08607, doi:10.1029/2007GL032838.

    • Search Google Scholar
    • Export Citation
  • Enomoto, T., A. Kuwano-Yoshida, N. Komori, and W. Ohfuchi, 2008: Description of AFES2: Improvements for high-resolution and coupled simulations. High Resolution Numerical Modeling of the Atmosphere and Ocean, K. Hamilton and W. Ohfuchi, Eds., Springer, 77–97.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., 1985: Sea surface temperature anomalies, planetary waves and air-sea feedback in the middle latitudes. Rev. Geophys., 23, 357390.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and E. Kestenare, 2002: The surface heat flux feedback. Part 1: Estimates from observations in the Atlantic and the North Pacific. Climate Dyn., 19, 633647.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and N. Sennéchael, 2007: Observed influence of North Pacific SST anomalies on the atmospheric circulation. J. Climate, 20, 592606.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., A. Czaja, and B. L’Heveder, 1998: Air–sea feedback in the North Atlantic and surface boundary conditions for ocean models. J. Climate, 11, 23102324.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., N. Sennéchael, Y.-O. Kwon, and M. A. Alexander, 2011: Influence of the meridional shifts of the Kuroshio and the Oyashio Extensions on the atmospheric circulation. J. Climate, 24, 762777.

    • Search Google Scholar
    • Export Citation
  • Gent, P., and J. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155.

  • Held, I. M., 1983: Stationary and quasi-stationary eddies in the extratropical troposphere: Theory. Large-Scale Dynamical Processes in the Atmosphere, B. J. Hoskins and R. P. Pearce, Eds., Academic Press, 127–168.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946.

    • Search Google Scholar
    • Export Citation
  • Hotta, D., and H. Nakamura, 2011: On the significance of sensible heat supply from the ocean in the maintenance of mean baroclinicity along storm tracks. J. Climate, 24, 33773401.

    • Search Google Scholar
    • Export Citation
  • Jensen, T. G., T. J. Campbell, R. A. Allard, R. J. Small, and T. A. Smith, 2011: Turbulent heat fluxes during an intense cold-air outbreak over the Kuroshio Extension region: Results from a high-resolution coupled atmosphere–ocean model. Ocean Dyn., 61, 657674.

    • Search Google Scholar
    • Export Citation
  • Joyce, T. M., Y.-O. Kwon, and L. Yu, 2009: On the relationship between synoptic wintertime atmospheric variability and path shifts in the Gulf Stream and the Kuroshio Extension. J. Climate, 22, 31773192.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kelly, K. A., and S. Dong, 2004: Heat budget in the Gulf Stream region: The importance of heat storage and advection. J. Phys. Oceanogr., 34, 12141231.

    • Search Google Scholar
    • Export Citation
  • Kelly, K. A., R. Small, R. Samelson, B. Qiu, T. Joyce, Y.-O. Kwon, and M. Cronin, 2010: Western boundary currents and frontal air–sea interaction: Gulf Stream and Kuroshio Extension. J. Climate, 23, 56445667.

    • Search Google Scholar
    • Export Citation
  • Komori, N., K. Takahashi, K. Komine, T. Motoi, X. Zhang, and G. Sagawa, 2005: Description of sea-ice component of coupled ocean-sea ice model for the Earth Simulator (OIFES). J. Earth Simul., 4, 3145.

    • Search Google Scholar
    • Export Citation
  • Komori, N., A. Kuwano-Yoshida, T. Enomoto, H. Sasaki, and W. Ohfuchi, 2008a: High-resolution simulation of the global coupled atmospheric-ocean system: Description and preliminary outcomes of CFES (CGCM for the Earth Simulator). High Resolution Numerical Modelling of the Atmosphere and Ocean, K. Hamilton and W. Ohfuchi, Eds., Springer, 241–260.

    • Search Google Scholar
    • Export Citation
  • Komori, N., W. Ohfuchi, B. Taguchi, H. Sasaki, and P. Klein, 2008b: Deep ocean inertia-gravity waves simulated in a high-resolution global coupled atmosphere–ocean GCM. Geophys. Res. Lett., 35, L04610, doi:10.1029/2007GL032807.

    • Search Google Scholar
    • Export Citation
  • Konda, M., H. Ichikawa, H. Tomita, and M. F. Cronin, 2010: Surface heat flux variations across the Kuroshio Extension as observed by surface flux buoys. J. Climate, 23, 52065221.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., W. A. Robinson, I. Brade, N. M. J. Hall, S. Peng, and R. Sutton, 2002: Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. J. Climate, 15, 22332256.

    • Search Google Scholar
    • Export Citation
  • Kuwano-Yoshida, A., T. Enomoto, and W. Ohfuchi, 2010a: An improved cloud scheme for climate simulations. Quart. J. Roy. Meteor. Soc., 136, 15831597.

    • Search Google Scholar
    • Export Citation
  • Kuwano-Yoshida, A., S. Minobe, and S.-P. Xie, 2010b: Precipitation response to the Gulf Stream in an atmospheric GCM. J. Climate, 23, 36763698.

    • Search Google Scholar
    • Export Citation
  • Kwon, Y.-O., M. Alexander, N. Bond, C. Frankignoul, H. Nakamura, B. Qiu, and L. Thompson, 2010: Role of the Gulf Stream and Kuroshio–Oyashio systems in large-scale atmosphere–ocean interaction: A review. J. Climate, 23, 32493281.

    • Search Google Scholar
    • Export Citation
  • Kwon, Y.-O., C. Deser, and C. Cassou, 2011: Coupled atmosphere-mixed layer ocean response to ocean heat flux convergence along the Kuroshio Current Extension. Climate Dyn., 36, 22952312, doi:10.1007/s00382-010-0764-8.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., 1997: Interactions between global SST anomalies and the midlatitude atmospheric circulation. Bull. Amer. Meteor. Soc., 78, 2133.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and E. O. Holopainen, 1984: Transient eddy forcing of the time-mean flow as identified by geopotential tendencies. J. Atmos. Sci., 41, 13631392.

    • Search Google Scholar
    • Export Citation
  • Linkin, M. E., and S. Nigam, 2008: The North Pacific Oscillation–West Pacific teleconnection pattern: Mature-phase structure and winter impacts. J. Climate, 21, 19791997.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., and L. Wu, 2004: Atmospheric response to North Pacific SST: The role of ocean–atmosphere coupling. J. Climate, 17, 18591882.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., Y. Liu, L. Wu, and R. Jacob, 2007: Seasonal and long-term atmospheric responses to reemerging North Pacific Ocean variability: A combined dynamical and statistical assessment. J. Climate, 20, 955980.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and R. H. Jones, 2001: A quantitative estimate of the effect of aliasing in climatological time series. J. Climate, 14, 39873993.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079.

    • Search Google Scholar
    • Export Citation
  • Minobe, S., A. Kuwano-Yoshida, N. Komori, S.-P. Xie, and R. Small, 2008: Influence of the Gulf Stream on the troposphere. Nature, 452, 206209.

    • Search Google Scholar
    • Export Citation
  • Minobe, S., A. Kuwano-Yoshida, M. Miyashita, H. Tokinaga, and S.-P. Xie, 2010: Atmospheric response to the Gulf Stream: Seasonal variations. J. Climate, 23, 36993719.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., 1992: Midwinter suppression of baroclinic wave activity in the Pacific. J. Atmos. Sci., 49, 16291642.

  • Nakamura, H., 1996: Year-to-year and interdecadal variability in the activity of intraseasonal fluctuations in the Northern Hemisphere wintertime circulation. Theor. Appl. Climatol., 55, 1932.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., and T. Yamagata, 1999: Recent decadal SST variability in the northwestern Pacific and associated atmospheric anomalies. Beyond El Niño: Decadal and Interdecadal Climate Variability, A. Navarra Ed., Springer, 49–72.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., and T. Sampe, 2002: Trapping of synoptic-scale disturbances into the North-Pacific subtropical jet core in midwinter. Geophys. Res. Lett., 29, 1761, doi:10.1029/2002GL015535.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., and A. S. Kazmin, 2003: Decadal change in the North Pacific oceanic frontal zones as revealed in ship and satellite observation. J. Geophys. Res., 108, 3078, doi:10.1029/1999JC000085.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., M. Tanaka, and J. M. Wallace, 1987: Horizontal structure and energetics of Northern Hemisphere wintertime teleconnection patterns. J. Atmos. Sci., 44, 33773391.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., G. Lin, and T. Yamagata, 1997: Decadal climate variability in the North Pacific during recent decades. Bull. Amer. Meteor. Soc., 78, 22152225.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., T. Izumi, and T. Sampe, 2002: Interannual and decadal modulations recently observed in the Pacific storm track activity and East Asian winter monsoon. J. Climate, 15, 18551874.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., T. Sampe, Y. Tanimoto, and A. Shimpo, 2004: Observed associations among storm tracks, jet streams, and midlatitude oceanic fronts. Earth Climate: The Ocean-Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 329–345.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., T. Sampe, A. Goto, W. Ohfuchi, and S.-P. Xie, 2008: On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophys. Res. Lett., 35, L15709, doi:10.1029/2008GL034010.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., T. Miyasaka, Y. Kosaka, K. Takaya, and M. Honda, 2010: Northern Hemisphere extratropical tropospheric planetary waves and their low-frequency variability: Their vertical structure and interaction with transient eddies and surface thermal contrasts. Climate Dynamics: Why Does Climate Vary? Geophys. Monogr., Vol. 189, Amer. Geophys. Union, 149–179.

    • Search Google Scholar
    • Export Citation
  • Nakamura, M., and S. Yamane, 2010: Dominant anomaly patterns in the near-surface baroclinicity and accompanying anomalies in the atmosphere and oceans. Part II: North Pacific basin. J. Climate, 23, 64456467.

    • Search Google Scholar
    • Export Citation
  • Nigam, S., 2003: Teleconnections. Encyclopedia of Atmospheric Sciences, J. R. Holton, J. Pyle, and J. A. Curry, Academic Press, 2243–2269.

    • Search Google Scholar
    • Export Citation
  • Nishii, K., H. Nakamura, and T. Miyasaka, 2009: Modulations in the planetary wave field induced by upward-propagating Rossby wave packets prior to stratospheric sudden warming events: A case study. Quart. J. Roy. Meteor. Soc., 135, 3952.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., and S. Yamada, 1989: Recent warming of tropical sea surface temperature and its relationship to the Northern Hemisphere circulation. J. Meteor. Soc. Japan, 67, 375382.

    • Search Google Scholar
    • Export Citation
  • Nonaka, M., H. Nakamura, Y. Tanimoto, T. Kagimoto, and H. Sasaki, 2006: North Pacific decadal variability in SST and frontal structure simulated in a high-resolution OGCM. J. Climate, 19, 19701989.

    • Search Google Scholar
    • Export Citation
  • Nonaka, M., H. Nakamura, Y. Tanimoto, T. Kagimoto, and H. Sasaki, 2008: Interannual-to-decadal variability in the Oyashio current and its influence on temperature in the subarctic frontal zone: An eddy-resolving OGCM simulation. J. Climate, 21, 62836303.

    • Search Google Scholar
    • Export Citation
  • Nonaka, M., H. Nakamura, B. Taguchi, N. Komori, A. Kuwano-Yoshida, and K. Takaya, 2009: Localization of surface heat flux in association with a sea surface temperature front in the south Indian Ocean in a high-resolution coupled GCM. J. Climate, 22, 65156535.

    • Search Google Scholar
    • Export Citation
  • Numaguti, A., M. Takahashi, T. Nakajima, and A. Sumi, 1997: Description of CCSRNIES Atmospheric General Circulation model. Study on the Climate System and Mass Transport by a Climate Model, A. Numaguchi, Ed., Center for Global Environmental Research, National Institute for Environmental Studies, 1–48.

    • Search Google Scholar
    • Export Citation
  • Ohfuchi, W., and Coauthors, 2004: 10-km mesh meso-scale resolving simulations of the global atmosphere on the Earth Simulator—Preliminary outcomes of AFES (AGCM for the Earth Simulator). J. Earth Simul., 1, 834.

    • Search Google Scholar
    • Export Citation
  • Ohfuchi, W., H. Sasaki, Y. Masumoto, and H. Nakamura, 2007: “Virtual” atmospheric and oceanic circulations in the Earth Simulator. Bull. Amer. Meteor. Soc., 88, 861866.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., and S. M. Griffies, 2000: Mom 3.0 manual. Tech. Rep., NOAA/Geophysical Fluid Dynamics Laboratory, 680 pp.

  • Peng, S., and J. S. Whitaker, 1999: Mechanisms determining the atmospheric response to midlatitude SST anomalies. J. Climate, 12, 13931408.

    • Search Google Scholar
    • Export Citation
  • Peng, S., W. A. Robinson, and M. P. Hoerling, 1997: The modeled atmospheric response to midlatitude SST anomalies and its dependence on background circulation states. J. Climate, 10, 971987.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., N. Schneider, and S. Chen, 2007: Coupled decadal variability in the North Pacific: An observationally constrained idealized model. J. Climate, 20, 36023620.

    • Search Google Scholar
    • Export Citation
  • Rayner, N., D. Parker, E. Horton, C. Folland, L. Alexander, D. Rowell, E. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Redi, M., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 11541158.

  • Richter, I., S. K. Behera, Y. Masumoto, B. Taguchi, N. Komori, and T. Yamagata, 2010: On the triggering of Benguela Niños: Remote equatorial versus local influences. Geophys. Res. Lett., 37, L20604, doi:10.1029/2010GL044461.

    • Search Google Scholar
    • Export Citation
  • Sampe, T., H. Nakamura, A. Goto, and W. Ohfuchi, 2010: Significance of a midlatitude SST frontal zone in the formation of a storm track and an eddy-driven westerly jet. J. Climate, 23, 17931814.

    • Search Google Scholar
    • Export Citation
  • Schlesinger, M. E., and N. Ramankutty, 1994: An oscillation in the global climate system of period 65-70 years. Nature, 367, 723726, doi:10.1038/367723a0.

    • Search Google Scholar
    • Export Citation
  • Seager, R., Y. Kushnir, N. H. Naik, M. A. Cane, and J. Miller, 2001: Wind-driven shifts in the latitude of the Kuroshio–Oyashio Extension and generation of SST anomalies on decadal timescales. J. Climate, 14, 42494265.

    • Search Google Scholar
    • Export Citation
  • Simmons, A., J. Wallace, and G. Branstator, 1983: Barotropic wave propagation and instability, and atmospheric teleconnection patterns. J. Atmos. Sci., 40, 13631392.

    • Search Google Scholar
    • Export Citation
  • Taguchi, B., H. Nakamura, M. Nonaka, and S.-P. Xie, 2009: Atmospheric influence of the Kuroshio–Oyashio Extensions simulated for the 2003/04 winter in a regional atmospheric model. J. Climate, 22, 65366560.

    • Search Google Scholar
    • Export Citation
  • Tanimoto, Y., H. Nakamura, T. Kagimoto, and S. Yamane, 2003: An active role of extratropical sea surface anomalies in determining turbulent heat fluxes. J. Geophys. Res., 108, 3304, doi:10.1029/2002JC00175.

    • Search Google Scholar
    • Export Citation
  • Thompson, L., and Y.-O. Kwon, 2010: An enhancement of low-frequency variability in the Kuroshio–Oyashio Extension in CCSM3 owing to ocean model biases. J. Climate, 23, 62216233.

    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., Y. Tanimoto, S.-P. Xie, T. Sampe, H. Tomita, and H. Ichikawa, 2009: Ocean frontal effects on the vertical development of clouds over the western North Pacific: In situ and satellite observations. J. Climate, 22, 42414260.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1990: Recent observed interdecadal climate changes in the Northern Hemisphere. Bull. Amer. Meteor. Soc., 71, 988993.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. W. Hurrell, 1994: Decadal atmosphere-ocean variations in the Pacific. Climate Dyn., 9, 303319.

  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324.

    • Search Google Scholar
    • Export Citation
  • Walker, G., and E. Bliss, 1932: World weather V. Mem. Roy. Meteor. Soc., 4, 5384.

  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and N.-C. Lau, 1985: On the role of barotropic energy conversions in the general circulation. Advances in Geophysics, Vol. 28A, Academic Press, 33–74.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., T. Kunitani, A. Kubokawa, M. Nonaka, and S. Hosoda, 2000: Interdecadal thermocline variability in the North Pacific for 1958–1997: A GCM simulation. J. Phys. Oceanogr., 30, 27982813.

    • Search Google Scholar
    • Export Citation
  • Yasuda, I., 2003: Hydrographic structure and variability of the Kuroshio-Oyashio transition area. J. Oceanogr., 59, 389402.

  • Yasuda, T., and K. Hanawa, 1997: Decadal changes in the mode waters in the midlatitude North Pacific. J. Phys. Oceanogr., 27, 858870.

    • Search Google Scholar
    • Export Citation
  • Yoshiike, S., and R. Kawamura, 2009: Influence of wintertime large-scale circulation on the explosively developing cyclones over the western North Pacific and their downstream effects. J. Geophys. Res., 114, D13110, doi:10.1029/2009JD011820.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1186 468 30
PDF Downloads 655 186 19