An Equatorial Ocean Bottleneck in Global Climate Models

Kristopher B. Karnauskas Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Kristopher B. Karnauskas in
Current site
Google Scholar
PubMed
Close
,
Gregory C. Johnson NOAA/Pacific Marine Environmental Laboratory,* Seattle, Washington

Search for other papers by Gregory C. Johnson in
Current site
Google Scholar
PubMed
Close
, and
Raghu Murtugudde Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Raghu Murtugudde in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Equatorial Undercurrent (EUC) is a major component of the tropical Pacific Ocean circulation. EUC velocity in most global climate models is sluggish relative to observations. Insufficient ocean resolution slows the EUC in the eastern Pacific where nonlinear terms should dominate the zonal momentum balance. A slow EUC in the east creates a bottleneck for the EUC to the west. However, this bottleneck does not impair other major components of the tropical circulation, including upwelling and poleward transport. In most models, upwelling velocity and poleward transport divergence fall within directly estimated uncertainties. Both of these transports play a critical role in a theory for how the tropical Pacific may change under increased radiative forcing, that is, the ocean dynamical thermostat mechanism. These findings suggest that, in the mean, global climate models may not underrepresent the role of equatorial ocean circulation, nor perhaps bias the balance between competing mechanisms for how the tropical Pacific might change in the future. Implications for model improvement under higher resolution are also discussed.

Pacific Marine Environmental Laboratory Contribution Number 3504.

Corresponding author address: Kristopher B. Karnauskas, Geology and Geophysics, Woods Hole Oceanographic Institution, 266 Woods Hole Road, MS #23, Woods Hole, MA 02543-1050. E-mail: kk@whoi.edu

Abstract

The Equatorial Undercurrent (EUC) is a major component of the tropical Pacific Ocean circulation. EUC velocity in most global climate models is sluggish relative to observations. Insufficient ocean resolution slows the EUC in the eastern Pacific where nonlinear terms should dominate the zonal momentum balance. A slow EUC in the east creates a bottleneck for the EUC to the west. However, this bottleneck does not impair other major components of the tropical circulation, including upwelling and poleward transport. In most models, upwelling velocity and poleward transport divergence fall within directly estimated uncertainties. Both of these transports play a critical role in a theory for how the tropical Pacific may change under increased radiative forcing, that is, the ocean dynamical thermostat mechanism. These findings suggest that, in the mean, global climate models may not underrepresent the role of equatorial ocean circulation, nor perhaps bias the balance between competing mechanisms for how the tropical Pacific might change in the future. Implications for model improvement under higher resolution are also discussed.

Pacific Marine Environmental Laboratory Contribution Number 3504.

Corresponding author address: Kristopher B. Karnauskas, Geology and Geophysics, Woods Hole Oceanographic Institution, 266 Woods Hole Road, MS #23, Woods Hole, MA 02543-1050. E-mail: kk@whoi.edu
Save
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 2205–2231.

    • Search Google Scholar
    • Export Citation
  • An, S. I., J.-W. Kim, S.-H. Im, B.-M. Kim, and J.-H. Park, 2011: Recent and future sea surface temperature trends in tropical Pacific warm pool and cold tongue regions. Climate Dyn., doi:10.1007/s00382-011-1129-7, in press.

    • Search Google Scholar
    • Export Citation
  • Barsugli, J. J., S.-I. Shin, and P. D. Sardeshmukh, 2006: Sensitivity of global warming to the pattern of tropical ocean warming. Climate Dyn., 27, 483–492.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163–172.

  • Brown, J. N., J. S. Godfrey, and R. Fiedler, 2007: A zonal momentum balance on density layers for the central and eastern equatorial Pacific. J. Phys. Oceanogr., 37, 1939–1955.

    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., and E. C. Brady, 1985: Diagnostic model of three-dimensional circulation in the upper equatorial Pacific Ocean. J. Phys. Oceanogr., 15, 1255–1273.

    • Search Google Scholar
    • Export Citation
  • Bunge, L., and A. J. Clarke, 2009: A verified estimate of the El Niño index Niño-3.4 since 1877. J. Climate, 22, 3979–3992.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., A. C. Clement, A. Kaplan, Y. Kushnir, D. Pozdnyakov, R. Seager, S. E. Zebiak, and R. Murtugudde, 1997: Twentieth-century sea surface temperature trends. Science, 275, 957–960.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 2999–3017.

    • Search Google Scholar
    • Export Citation
  • Clement, A. C., R. Seager, M. A. Cane, and S. E. Zebiak, 1996: An ocean dynamical thermostat. J. Climate, 9, 2190–2196.

  • Clement, A. C., A. C. Baker, and J. Leloup, 2010: Patterns of tropical warming. Nat. Geosci., 3, 8–9.

  • Compo, G. P., and P. D. Sardeshmukh, 2010: Removing ENSO-related variations from the climate record. J. Climate, 23, 1957–1978.

  • Cravatte, S., G. Madec, T. Izumo, C. Menkes, and A. Bozec, 2007: Progress in the 3-D circulation of the eastern equatorial Pacific in a climate ocean model. Ocean Modell., 17, 28–48.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, and M. A. Alexander, 2010: Twentieth century tropical sea surface temperature trends revisited. Geophys. Res. Lett., 37, L10701, doi:10.1029/2010GL043321.

    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., A. C. Clement, G. A. Vecchi, B. J. Soden, B. P. Kirtman, and S.-K. Lee, 2009: Climate response of the equatorial Pacific to global warming. J. Climate, 22, 4873–4892.

    • Search Google Scholar
    • Export Citation
  • Eden, C., and A. Timmermann, 2004: The influence of the Galápagos Islands on tropical temperatures, currents and the generation of tropical instability waves. Geophys. Res. Lett., 31, L15308, doi:10.1029/2004GL020060.

    • Search Google Scholar
    • Export Citation
  • Feely, R. A., and Coauthors, 2002: Seasonal and interannual variability of CO2 in the equatorial Pacific. Deep-Sea Res. II, 49, 2443–2469.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., M. P. Hoerling, A. S. Phillips, and T. Yu, 2005: Twentieth century North Atlantic climate change. Part I: Assessing determinism. Climate Dyn., 23, 371–389.

    • Search Google Scholar
    • Export Citation
  • Izumo, T., 2005: The Equatorial Undercurrent, meridional overturning circulation, and their roles in mass and heat exchanges during El Niño events in the tropical Pacific Ocean. Ocean Dyn., 55, 110–123.

    • Search Google Scholar
    • Export Citation
  • Jochum, M., 2009: Impact of latitudinal variations in vertical diffusivity on climate simulations. J. Geophys. Res., 114, C01010, doi:10.1029/2008JC005030.

    • Search Google Scholar
    • Export Citation
  • Jochum, M., G. Danabasoglu, M. Holland, Y.-O. Kwon, and W. G. Large, 2008: Ocean viscosity and climate. J. Geophys. Res., 113, C06017, doi:10.1029/2007JC004515.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., M. J. McPhaden, and E. Firing, 2001: Equatorial Pacific Ocean horizontal velocity, divergence, and upwelling. J. Phys. Oceanogr., 31, 839–849.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., B. M. Sloyan, W. S. Kessler, and K. E. McTaggart, 2002: Direct measurements of upper ocean currents and water properties across the tropical Pacific Ocean during the 1990s. Prog. Oceanogr., 52, 31–61.

    • Search Google Scholar
    • Export Citation
  • Karnauskas, K. B., R. Murtugudde, and A. J. Busalacchi, 2007: The effect of the Galápagos Islands on the equatorial Pacific cold tongue. J. Phys. Oceanogr., 37, 1266–1281.

    • Search Google Scholar
    • Export Citation
  • Karnauskas, K. B., R. Murtugudde, and A. J. Busalacchi, 2008: The effect of the Galápagos Islands on ENSO in forced ocean and hybrid coupled models. J. Phys. Oceanogr., 38, 2519–2534.

    • Search Google Scholar
    • Export Citation
  • Karnauskas, K. B., R. Seager, A. Kaplan, Y. Kushnir, and M. A. Cane, 2009: Observed strengthening of the zonal sea surface temperature gradient across the equatorial Pacific Ocean. J. Climate, 22, 4316–4321.

    • Search Google Scholar
    • Export Citation
  • Karnauskas, K. B., R. Murtugudde, and A. J. Busalacchi, 2010: Observing the Galápagos–EUC interaction: Insights and challenges. J. Phys. Oceanogr., 40, 2768–2777.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., G. C. Johnson, and D. W. Moore, 2003: Sverdrup and nonlinear dynamics of the Pacific equatorial currents. J. Phys. Oceanogr., 33, 994–1008.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., B. Jha, and M. L’Heureux, 2010: Are tropical SST trends changing the global teleconnection during La Niña? Geophys. Res. Lett., 37, L12702, doi:10.1029/2010GL043394.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., G. Danabasoglu, J. C. McWilliams, P. R. Gent, and F. O. Bryan, 2001: Equatorial circulation of a global ocean climate model with anisotropic horizontal viscosity. J. Phys. Oceanogr., 31, 518–536.

    • Search Google Scholar
    • Export Citation
  • Maes, C., G. Madec, and P. Delecluse, 1997: Sensitivity of an equatorial Pacific OGCM to the lateral diffusion. Mon. Wea. Rev., 125, 958–971.

    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., Jr., and P. Lu, 1994: Interaction between the subtropical and equatorial ocean circulations: The subtropical cell. J. Phys. Oceanogr., 24, 466–497.

    • Search Google Scholar
    • Export Citation
  • Murtugudde, R., J. Beauchamp, C. R. McClain, M. Lewis, and A. J. Busalacchi, 2002: Effects of penetrative radiation on the upper tropical ocean circulation. J. Climate, 15, 470–486.

    • Search Google Scholar
    • Export Citation
  • Pezzi, L. P., and K. J. Richards, 2003: Effects of lateral mixing on the mean state and eddy activity of an equatorial ocean. J. Geophys. Res., 108, 3371, doi:10.1029/2003JC001834.

    • Search Google Scholar
    • Export Citation
  • Reichler, T., and J. Kim, 2008: How well do coupled models simulate today’s climate? Bull. Amer. Meteor. Soc., 89, 303–311.

    • Search Google Scholar
    • Export Citation
  • Saravanan, R., 1998: Atmospheric low-frequency variability and its relationship to midlatitude SST variability: Studies using the NCAR Climate System Model. J. Climate, 11, 1386–1404.

    • Search Google Scholar
    • Export Citation
  • Schott, F. A., J. P. McCrearyJr., and G. C. Johnson, 2004: Shallow overturning circulations of the tropical-subtropical oceans. Earth’s Climate: The Ocean-Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 261–304.

    • Search Google Scholar
    • Export Citation
  • Seager, R., and R. Murtugudde, 1997: Ocean dynamics, thermocline adjustment, and regulation of tropical SST. J. Climate, 10, 521–534.

    • Search Google Scholar
    • Export Citation
  • Seager, R., and G. A. Vecchi, 2011: Greenhouse warming and the 21st century hydroclimate of southwestern North America. Proc. Natl. Acad. Sci. USA, 107, 21 277–21 282.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller Jr., and Z. Chen, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Tung, K.-K., and J. Zhou, 2010: The Pacific’s response to surface heating in 130 yr of SST: La Niña–like or El Niño–like? J. Atmos. Sci., 67, 2649–2657.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 4316–4340.

  • Vecchi, G. A., A. C. Clement, and B. J. Soden, 2008: Examining the tropical Pacific’s response to global warming. Eos, Trans. Amer. Geophys. Union, 89, doi:10.1029/2008EO090002.

    • Search Google Scholar
    • Export Citation
  • Wacongne, S., 1990: On the difference in strength between Atlantic and Pacific undercurrents. J. Phys. Oceanogr., 20, 792–799.

  • Yu, Z., and P. S. Schopf, 1997: Vertical eddy mixing in the tropical upper ocean: Its influence on zonal currents. J. Phys. Oceanogr., 27, 1447–1458.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., L. Wu, and L. Yu, 2011: Oceanic origin of a recent La Niña-like trend in the tropical Pacific. Adv. Atmos. Sci., 28, 1109–1117.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., J. Li, and X. Zhao, 2010: Sea surface temperature cooling mode in the Pacific cold tongue. J. Geophys. Res., 115, C12042, doi:10.1029/2010JC006501.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 298 76 7
PDF Downloads 144 46 5