Importance of Circulation Changes to Atlantic Heat Storage Rates on Seasonal and Interannual Time Scales

Christopher G. Piecuch Atmospheric and Environmental Research, Inc., Lexington, Massachusetts

Search for other papers by Christopher G. Piecuch in
Current site
Google Scholar
PubMed
Close
and
Rui M. Ponte Atmospheric and Environmental Research, Inc., Lexington, Massachusetts

Search for other papers by Rui M. Ponte in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Ocean heat budgets and transports are diagnosed to elucidate the importance of general circulation changes to Atlantic Ocean heat storage rates. The focus is on low- and midlatitude regions and on seasonal and interannual time scales. An estimate of the ocean state over 1993–2004, produced by a coarse-resolution general circulation model fit to observations via the method of Lagrange multipliers, is used. Meridional heat transports are first decomposed into contributions from time-mean and time-variable velocity and temperature and second from zonally symmetric baroclinic (overturning, including Ekman) and zonally asymmetric (gyre and other spatially correlated) circulations. Heat storage rates are then ascribed to ocean–atmosphere heat exchanges, diffusive mixing, and advective processes related to the various components of the meridional heat transport. Results show that seasonal heat storage changes generally represent a local response to surface heat inputs, but seasonal advective changes are also important near the equator. Interannual heat storage rate anomalies are mostly due to advection in tropical regions, whereas both surface heat fluxes and advection contribute at higher latitudes. Low-latitude advection can be primarily attributed to zonally symmetric baroclinic circulations, but temperature variations and zonally asymmetric flows can contribute elsewhere. A relationship between interannual heat storage rates in the equatorial Atlantic’s top 100 m and meridional heat transport associated with the zonally symmetric baroclinic flow is observed; however, due in part to the role of shallow advective processes at these latitudes, any direct relationship between sea surface temperature variability and heat transport changes associated with intermediate or deep meridional overturning circulations is not clear.

Corresponding author address: Christopher G. Piecuch, Atmospheric and Environmental Research, Inc., 131 Hartwell Ave., Lexington, MA 02421. E-mail: cpiecuch@aer.com

Abstract

Ocean heat budgets and transports are diagnosed to elucidate the importance of general circulation changes to Atlantic Ocean heat storage rates. The focus is on low- and midlatitude regions and on seasonal and interannual time scales. An estimate of the ocean state over 1993–2004, produced by a coarse-resolution general circulation model fit to observations via the method of Lagrange multipliers, is used. Meridional heat transports are first decomposed into contributions from time-mean and time-variable velocity and temperature and second from zonally symmetric baroclinic (overturning, including Ekman) and zonally asymmetric (gyre and other spatially correlated) circulations. Heat storage rates are then ascribed to ocean–atmosphere heat exchanges, diffusive mixing, and advective processes related to the various components of the meridional heat transport. Results show that seasonal heat storage changes generally represent a local response to surface heat inputs, but seasonal advective changes are also important near the equator. Interannual heat storage rate anomalies are mostly due to advection in tropical regions, whereas both surface heat fluxes and advection contribute at higher latitudes. Low-latitude advection can be primarily attributed to zonally symmetric baroclinic circulations, but temperature variations and zonally asymmetric flows can contribute elsewhere. A relationship between interannual heat storage rates in the equatorial Atlantic’s top 100 m and meridional heat transport associated with the zonally symmetric baroclinic flow is observed; however, due in part to the role of shallow advective processes at these latitudes, any direct relationship between sea surface temperature variability and heat transport changes associated with intermediate or deep meridional overturning circulations is not clear.

Corresponding author address: Christopher G. Piecuch, Atmospheric and Environmental Research, Inc., 131 Hartwell Ave., Lexington, MA 02421. E-mail: cpiecuch@aer.com
Save
  • Adcroft, A., and Coauthors, 2010: MITgcm User Manual. MIT/EAPS, 451 pp.

  • Bacon, S., 1997: Circulation and fluxes in the North Atlantic between Greenland and Ireland. J. Phys. Oceanogr., 27, 14201435.

  • Boccaletti, G., R. Ferrari, A. Adcroft, D. Ferreira, and J. Marshall, 2005: The vertical structure of ocean heat transport. Geophys. Res. Lett., 32, L10603, doi:10.1029/2005GL022474.

    • Search Google Scholar
    • Export Citation
  • Böning, C. W., and P. Herrmann, 1994: Annual cycle of poleward heat transport in the ocean: Results from high-resolution modeling of the north and equatorial Atlantic. J. Phys. Oceanogr., 24, 91107.

    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., and S. Levitus, 1998: Objective analysis of temperature and salinity for the world ocean on a ¼° grid. NOAA Atlas NESDIS 11, 62 pp.

    • Search Google Scholar
    • Export Citation
  • Bryden, H., and S. Imawaki, 2001: Ocean heat transport. Ocean Circulation and Climate: Observing and Modelling the Global Ocean, G. Siedler, J. Church, and J. Gould, Eds., Cambridge, 455–474.

    • Search Google Scholar
    • Export Citation
  • Deser, C., M. Holland, G. Reverdin, and M. Timlin, 2002: Decadal variations in Labrador Sea ice cover and North Atlantic sea surface temperatures. J. Geophys. Res., 107, 3035, doi:10.1029/2000JC000683.

    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, S.-P. Xie, and A. S. Phillips, 2010: Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci., 2, 115143.

    • Search Google Scholar
    • Export Citation
  • Ding, H., N. S. Keenlyside, and M. Latif, 2010: Equatorial Atlantic interannual variability: Role of heat content. J. Geophys. Res., 115, C09020, doi:10.1029/2010JC006304.

    • Search Google Scholar
    • Export Citation
  • Dong, B.-W., and R. T. Sutton, 2001: The dominant mechanisms of variability in Atlantic ocean heat transport in a coupled ocean-atmosphere GCM. Geophys. Res. Lett., 28, 12, doi:10.1029/2000GL012531.

    • Search Google Scholar
    • Export Citation
  • Dong, B.-W., and R. T. Sutton, 2002: Variability in North Atlantic heat storage and heat transport in a coupled ocean-atmosphere GCM. Climate Dyn., 19, 485497.

    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., P. J. Minnett, C. Gentemann, T. J. Nightingale, I. J. Barton, B. Ward, and M. J. Murray, 2002: Toward improved validation of satellite sea surface skin temperature measurements for climate research. J. Climate, 15, 353369.

    • Search Google Scholar
    • Export Citation
  • Fukumori, I., R. Raghunath, and L.-L. Fu, 1998: Nature of global large-scale sea level variability in relation to atmospheric forcing: A modeling study. J. Geophys. Res., 103 (C3), 54935512.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., and C. Wunsch, 2003: Large-scale ocean heat and freshwater transports during the World Ocean Circulation Experiment. J. Climate, 16, 696705.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155.

  • Gill, A. E., and P. P. Niiler, 1973: The theory of the seasonal variability in the ocean. Deep-Sea Res., 20, 141177.

  • Gouretski, V. V., and K. P. Koltermann, 2004: WOCE Global Hydrographic Climatology: A Technical Report. Berichte des Bundesamtes für Seeschifffahrt und Hydrographie, 52 pp. and two CD-ROMs.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 1998: The Gent–McWilliams skew flux. J. Phys. Oceanogr., 28, 831841.

  • Grist, J. P., and Coauthors, 2010: The roles of surface heat flux and ocean heat transport convergence in determining Atlantic Ocean temperature variability. Ocean Dyn., 60, 771790, doi:10.1007/s10236-010-0292-4.

    • Search Google Scholar
    • Export Citation
  • Hall, M. M., and H. L. Bryden, 1982: Direct estimates and mechanisms of ocean heat transport. Deep-Sea Res., 29, 339359.

  • Heimbach, P., 2008: The MITgcm/ECCO adjoint modelling infrastructure. CLIVAR Exchanges, Vol. 13, International CLIVAR Project Office, Southampton, United Kingdom, 13–17.

    • Search Google Scholar
    • Export Citation
  • Heimbach, P., C. Hill, and R. Giering, 2005: An efficient exact adjoint of the parallel MIT general circulation model, generated via automatic differentiation. Future Gener. Comput. Syst., 21, 13561371.

    • Search Google Scholar
    • Export Citation
  • Holfort, J., and G. Siedler, 2001: The meridional oceanic transports of heat and nutrients in the South Atlantic. J. Phys. Oceanogr., 31, 528.

    • Search Google Scholar
    • Export Citation
  • Hsiung, J., R. E. Newell, and T. Houghtby, 1989: The annual cycle of oceanic heat storage and oceanic meridional heat transport. Quart. J. Roy. Meteor. Soc., 115, 128.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and J. Marotzke, 2001: The dynamics of ocean heat transport variability. Rev. Geophys., 39, 385411, doi:10.1029/2000RG000084.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and J. Marotzke, 2002: The oceanic eddy heat transport. J. Phys. Oceanogr., 32, 33283345.

  • Jerlov, N. G., 1968: Optical Oceanography. Elsevier, 194 pp.

  • Johns, W. E., and Coauthors, 2011: Continuous, array-based estimates of Atlantic Ocean heat transport at 26.5°N. J. Climate, 24, 24292449.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., 2010: Deconstructing the conveyor belt. Science, 328, 15071511.

  • Lumpkin, R., K. G. Speer, and K. P. Koltermann, 2008: Transport across 48°N in the Atlantic Ocean. J. Phys. Oceanogr., 38, 733752.

  • MacDonald, A. M., 1998: The global ocean circulation: A hydrographic estimate and regional analysis. Prog. Oceanogr., 41, 281382.

  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997a: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102 (C3), 57535766.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., C. Hill, L. Perelman, and A. Adcroft, 1997b: Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res., 102 (C3), 57335752.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and Coauthors, 2001: North Atlantic climate variability: Phenomena, impacts and mechanisms. Int. J. Climatol., 21, 18631898, doi:10.1002/joc.693.

    • Search Google Scholar
    • Export Citation
  • McDonagh, E. L., and B. A. King, 2005: Oceanic fluxes in the South Atlantic. J. Phys. Oceanogr., 35, 109122.

  • McDonagh, E. L., P. McLeod, B. A. King, H. L. Bryden, and S. T. Valdés, 2010: Circulation, heat, and freshwater transport at 36°N in the Atlantic. J. Phys. Oceanogr., 40, 26612678.

    • Search Google Scholar
    • Export Citation
  • Merle, J., 1980: Seasonal heat budget in the equatorial Atlantic ocean. J. Phys. Oceanogr., 10, 464469.

  • Paulson, C. A., and J. J. Simpson, 1977: Irradiance measurements in the upper ocean. J. Phys. Oceanogr., 7, 952956.

  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 11541158.

  • Rintoul, S. R., 1991: South Atlantic interbasin exchange. J. Geophys. Res., 96 (C2), 26752692.

  • Sato, O. T., and T. Rossby, 2000: Seasonal and low-frequency variability of the meridional heat flux at 36°N in the North Atlantic. J. Phys. Oceanogr., 30, 606621.

    • Search Google Scholar
    • Export Citation
  • Shaffrey, L., and R. Sutton, 2004: The interannual variability of energy transports within and over the Atlantic Ocean in a coupled climate model. J. Climate, 17, 14331448.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 1999: Some aspects of ocean heat transport by the shallow, intermediate and deep overturning circulations. Mechanisms of Global Climate Change at Millennial Timescales, Geophys. Monogr., Vol. 112, Amer. Geophys. Union, 1–22.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2003: Shallow, intermediate, and deep overturning components of the global heat budget. J. Phys. Oceanogr., 33, 530560.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14, 34333443.

  • Vialard, J., and P. Delecluse, 1998: An OGCM study for the TOGA decade. Part I: Role of salinity in the physics of the western Pacific fresh pool. J. Phys. Oceanogr., 28, 10711088.

    • Search Google Scholar
    • Export Citation
  • Volkov, D. L., T. Lee, and L.-L. Fu, 2008: Eddy-induced meridional heat transport in the ocean. Geophys. Res. Lett., 35, L20601, doi:10.1029/2008GL035490.

    • Search Google Scholar
    • Export Citation
  • Wang, J., and J. A. Carton, 2002: Seasonal heat budgets of the North Pacific and North Atlantic Oceans. J. Phys. Oceanogr., 32, 34743489.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and P. Heimbach, 2006: Estimated decadal changes in the North Atlantic meridional overturning circulation and heat flux 1993–2004. J. Phys. Oceanogr., 36, 20122024.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and P. Heimbach, 2007: Practical global oceanic state estimation. Physica D, 230, 197208.

  • Wunsch, C., and P. Heimbach, 2009: The globally zonally integrated ocean circulation, 1992–2006: Seasonal and decadal variability. J. Phys. Oceanogr., 39, 351368.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., R. M. Ponte, and P. Heimbach, 2007: Decadal trends in sea level patterns: 1993–2004. J. Climate, 20, 58895911.

  • Wunsch, C., P. Heimbach, R. M. Ponte, I. Fukumori, and Coauthors, 2009: The global general circulation of the ocean estimated by the ECCO-Consortium. Oceanography (Wash. D.C.), 22, 88103.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 784 229 20
PDF Downloads 163 63 13