High-Latitude Contribution to Global Variability of Air–Sea Sensible Heat Flux

Xiangzhou Song Physical Oceanography Laboratory, Ocean University of China, Qingdao, China, and Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Xiangzhou Song in
Current site
Google Scholar
PubMed
Close
and
Lisan Yu Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Lisan Yu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The study examined global variability of air–sea sensible heat flux (SHF) from 1980 to 2009 and the large-scale atmospheric and ocean circulations that gave rise to this variability. The contribution of high-latitude wintertime SHF was identified, and the relative importance of the effect of the sea–air temperature difference versus the effect of wind on decadal SHF variability was analyzed using an empirical orthogonal function (EOF) approach. The study showed that global SHF anomalies are strongly modulated by SHF at high latitudes (poleward of 45°) during winter seasons. Decadal variability of global wintertime SHF can be reasonably represented by the sum of two leading EOF modes, namely, the boreal wintertime SHF in the northern oceans and the austral wintertime SHF in the southern oceans. The study also showed that global wintertime SHF is modulated by the prominent modes of the large-scale atmospheric circulation at high latitudes. The increase of global SHF in the 1990s is attributable to the strengthening of the Southern Hemisphere annular mode index, while the decrease of global SHF after 2000 is due primarily to the downward trend of the Arctic Oscillation index. This study identified the important effects of wind direction and speed on SHF variability. Changes in winds modify the sea–air temperature gradient by advecting cold and dry air from continents and by imposing changes in wind-driven oceanic processes that affect sea surface temperature (SST). The pattern of air temperature anomalies dominates over the pattern of SST anomalies and dictates the pattern of decadal SHF variability.

Corresponding author address: Xiangzhou Song, Physical Oceanography Laboratory, Ocean University of China, Qingdao, 266100, China. E-mail: oucsxz@ouc.edu.cn

This article is included in the CLIVAR/SeaFlux special collection.

Abstract

The study examined global variability of air–sea sensible heat flux (SHF) from 1980 to 2009 and the large-scale atmospheric and ocean circulations that gave rise to this variability. The contribution of high-latitude wintertime SHF was identified, and the relative importance of the effect of the sea–air temperature difference versus the effect of wind on decadal SHF variability was analyzed using an empirical orthogonal function (EOF) approach. The study showed that global SHF anomalies are strongly modulated by SHF at high latitudes (poleward of 45°) during winter seasons. Decadal variability of global wintertime SHF can be reasonably represented by the sum of two leading EOF modes, namely, the boreal wintertime SHF in the northern oceans and the austral wintertime SHF in the southern oceans. The study also showed that global wintertime SHF is modulated by the prominent modes of the large-scale atmospheric circulation at high latitudes. The increase of global SHF in the 1990s is attributable to the strengthening of the Southern Hemisphere annular mode index, while the decrease of global SHF after 2000 is due primarily to the downward trend of the Arctic Oscillation index. This study identified the important effects of wind direction and speed on SHF variability. Changes in winds modify the sea–air temperature gradient by advecting cold and dry air from continents and by imposing changes in wind-driven oceanic processes that affect sea surface temperature (SST). The pattern of air temperature anomalies dominates over the pattern of SST anomalies and dictates the pattern of decadal SHF variability.

Corresponding author address: Xiangzhou Song, Physical Oceanography Laboratory, Ocean University of China, Qingdao, 266100, China. E-mail: oucsxz@ouc.edu.cn

This article is included in the CLIVAR/SeaFlux special collection.

Save
  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224232.

  • Andersson, A., S. Bakan, K. Fennig, H. Grassl, C.-P. Klepp, and J. Schulz, 2007: Hamburg ocean atmosphere parameters and fluxes from satellite data—HOAPS-3 monthly mean. World Data Center for Climate Rep., doi:10.1594/WDCC/HOAPS3_MONTHLY.

  • Bala, G., P. B. Duffy, and K. E. Taylor, 2008: Impact of geoengineering schemes on the global hydrological cycle. Proc. Natl. Acad. Sci. USA, 105, 76647669.

    • Search Google Scholar
    • Export Citation
  • Berry, D. I., and E. C. Kent, 2009: A new air–sea interaction gridded dataset from ICOADS with uncertainty estimates. Bull. Amer. Meteor. Soc., 90, 645656.

    • Search Google Scholar
    • Export Citation
  • Berry, D. I., and E. C. Kent, 2011: Air-sea fluxes from ICOADS: The construction of a new gridded dataset with uncertainty estimates. Int. J. Climatol., 11, 9871001, doi:10.1002/joc.2059.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., 1993: Climate change and the regulation of the surface moisture and energy budgets. Climate Dyn., 8, 225239.

  • Böning, C. W., A. Dispert, M. Visbeck, S. R. Rintoul, and F. U. Schwarzkopf, 2008: The response of the Antarctic Circumpolar Current to recent climate change. Nat. Geosci., 1, 864869.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and Z. Zhou, 1997: Annual cycle of sea surface temperature in the tropical Atlantic Ocean. J. Geophys. Res., 102 (C13), 27 81327 824.

    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., 1992a: Latent and sensible flux over the north oceans: The connection to monthly atmosphere circulation. J. Climate, 5, 354369.

    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., 1992b: Latent and sensible flux over the north oceans: Driving the sea surface temperature. J. Phys. Oceanogr., 22, 859881.

    • Search Google Scholar
    • Export Citation
  • Curry, R. D., and M. S. McCartney, 2001: Ocean gyre circulation changes associated with the North Atlantic Oscillation. J. Phys. Oceanogr., 31, 33743400.

    • Search Google Scholar
    • Export Citation
  • da Silva, A., C. C. Young, and S. Levitus, 1994: Atlas of Surface Marine Data 1994. Vol. 1, Algorithms and Procedures, NOAA Atlas NESDIS 6, 83 pp.

  • Deser, C., and M. L. Blackmon, 1993: Surface climate variations over the North Atlantic Ocean during winter. J. Climate, 6, 17431753.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization on air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591.

    • Search Google Scholar
    • Export Citation
  • Foltz, G. R., and M. J. McPhaden, 2005: Mixed layer heat balance on intraseasonal time scales in the northwestern tropical Atlantic Ocean. J. Climate, 18, 41684184.

    • Search Google Scholar
    • Export Citation
  • Foltz, G. R., J. Vialard, B. P. Kumar, and M. J. McPhaden, 2010: Seasonal mixed layer heat balance of the southwestern tropical Indian Ocean. J. Climate, 23, 947965.

    • Search Google Scholar
    • Export Citation
  • Gleckler, P. J., and B. C. Weare, 1997: Uncertainties in global ocean surface heat flux climatologies derived from ship observations. J. Climate, 10, 27642781.

    • Search Google Scholar
    • Export Citation
  • Gong, D., and S. Wang, 1999: Definition of Antarctic Oscillation index. Geophys. Res. Lett., 26, 459462.

  • Grossman, R. L., and A. K. Betts, 1990: Air–sea interaction during an extreme cold air outbreak from the eastern coast of United States. Mon. Wea. Rev., 118, 324342.

    • Search Google Scholar
    • Export Citation
  • Hall, A., and M. Visbeck, 2002: Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. J. Climate, 15, 30433057.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699.

  • Hogg, A. M., M. P. Meredith, J. R. Blundell, and C. Wilson, 2008: Eddy heat flux in the Southern Ocean: Response to variable wind forcing. J. Climate, 21, 608620.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269, 676679.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and W. C. Deser, 2009: North Atlantic climate variability: The role of the North Atlantic Oscillation. J. Mar. Syst., 79, 231244.

    • Search Google Scholar
    • Export Citation
  • Ito, T., M. Woloszyn, and M. Mazloff, 2010: Anthropogenic carbon dioxide transport in the Southern Ocean driven by Ekman flow. Nature, 463, 8084.

    • Search Google Scholar
    • Export Citation
  • Josey, S. A., E. C. Kent, and P. K. Taylor, 1998: The Southampton Oceanography Centre (SOC) ocean–atmosphere heat, momentum and freshwater flux atlas. Southampton Oceanography Centre Rep. 6, 30 pp.

  • Kanamitsu, M., and Coauthors, 2002: NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643.

  • Karpechko, A. Y., N. P. Gillett, G. J. Marshall, and J. A. Screen, 2009: Climate impacts of the Southern Annular Mode simulated by the CMIP3 models. J. Climate, 22, 37513768.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., and K. E. Trenberth, 1997: Earth’s annual global mean energy budget. Bull. Amer. Meteor. Soc., 78, 197208.

  • Kubota, K., A. Kano, H. Muramatsu, and H. Tomita, 2003: Intercomparison of various surface latent heat flux fields. J. Climate, 16, 670678.

    • Search Google Scholar
    • Export Citation
  • Kubota, M., N. Iwasaka, S. Kizu, M. Konda, and K. Kutsuwada, 2002: Japanese ocean flux datasets with use of remote sensing observations (J-OFURO). J. Oceanogr., 58, 213225.

    • Search Google Scholar
    • Export Citation
  • Liu, J., T. Xiao, and L. Chen, 2010: Intercomparisons of air-sea heat flux over the Southern Ocean. J. Climate, 24, 11981211.

  • Liu, W. T., K. B. Katsaros, and J. A. Businger, 1979: Bulk parameterization of air–sea exchanges of heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci., 36, 17221735.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1950: Seasonal and irregular variations of the Northern Hemisphere sea-level pressure profile. J. Meteor., 8, 5259.

  • Marshall, J., and Coauthors, 2001: North Atlantic climate variability, phenomena, impacts and mechanisms. Int. J. Climatol., 21, 18631898.

    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., and A. M. Hogg, 2006: Circumpolar response of Southern Ocean eddy activity to a change in the Southern Annular Mode. Geophys. Res. Lett., 33, L16608, doi:10.1029/2006GL026499.

    • Search Google Scholar
    • Export Citation
  • Nigam, S., and Y. Chao, 1996: Evolution dynamics of tropical ocean–atmosphere annual cycle variability. J. Climate, 9, 31873205.

  • Oke, P. R., and M. H. England, 2004: Oceanic response to changes in the latitude of the Southern Hemisphere subpolar westerly winds. J. Climate, 17, 10401054.

    • Search Google Scholar
    • Export Citation
  • Pagowski, M., and G. W. K. Moore, 2001: A numerical study of an extreme cold-air outbreak over the Labrador Sea: Sea ice, air–sea interaction, and development of polar lows. Mon. Wea. Rev., 129, 4772.

    • Search Google Scholar
    • Export Citation
  • Renfrew, I. A., and G. W. K. Moore, 1999: An extreme cold-air outbreak over the Labrador Sea: Roll vortices and air–sea interaction. Mon. Wea. Rev., 127, 23792394.

    • Search Google Scholar
    • Export Citation
  • Renfrew, I. A., G. W. K. Moore, P. S. Guest, and K. Bumke, 2002: A comparison of surface boundary layer and surface turbulence heat flux observations over the Labrador Sea with ECMWF analyses and NCEP reanalyses. J. Phys. Oceanogr., 32, 383400.

    • Search Google Scholar
    • Export Citation
  • Sallée, J. B., K. G. Speer, and S. R. Rintoul, 2010: Zonally asymmetric response of the Southern Ocean mixed-layer depth to the Southern Annular Mode. Nat. Geosci., 3, 273279.

    • Search Google Scholar
    • Export Citation
  • Screen, J., and I. Simmonds, 2010: Increasing fall-winter energy loss from the Arctic Ocean and its role in Arctic temperature amplification. Geophys. Res. Lett., 37, L16707, doi:10.1029/2010GL044136.

    • Search Google Scholar
    • Export Citation
  • Screen, J., N. Gillett, D. Stevens, G. Marshall, and H. Roscoe, 2009: The role of eddies in the Southern Ocean temperature response to the Southern Annular Mode. J. Climate, 22, 806818.

    • Search Google Scholar
    • Export Citation
  • Screen, J., N. Gillett, and A. Karpechko, 2010: Mixed layer temperature response to the Southern Annular Mode: Mechanisms and model representation. J. Climate, 23, 664678.

    • Search Google Scholar
    • Export Citation
  • Sen Gupta, A., and M. H. England, 2006: Coupled ocean–atmosphere–ice response to variations in the Southern Annular Mode. J. Climate, 19, 44574486.

    • Search Google Scholar
    • Export Citation
  • Sen Gupta, A., and M. H. England, 2007: Coupled ocean–atmosphere feedback in the Southern Annular Mode. J. Climate, 20, 36773692.

  • Smith, S. R., P. J. Hughes, and M. A. Bourassa, 2011: A comparison of nine monthly air-sea flux products. Int. J. Climatol., 31, 10021027, doi:10.1002/joc.2225.

    • Search Google Scholar
    • Export Citation
  • Tanimoto, Y., H. Nakamura, T. Kagimoto, and S. Yamane, 2003: An active role of extratropical sea surface temperature anomalies in determining anomalous turbulent heat flux. J. Geophys. Res., 108, 3304, doi:10.1029/2002JC001750.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the winter time geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000a: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000b: Annular modes in the extratropical circulation. Part II: Trends. J. Climate, 13, 10181036.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895899.

  • Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90, 311323.

  • Våge, K., and Coauthors, 2009: Surprising return of deep convection to the subpolar North Atlantic Ocean in winter 2007–2008. Nat. Geosci., 2, 6772.

    • Search Google Scholar
    • Export Citation
  • Verdy, A., J. Marshall, and A. Czaja, 2006: Sea surface temperature variability along the path of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 36, 13171331.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., E. P. Chassignet, R. G. Curry, T. L. Delworth, R. R. Dickson, and G. Krahmann, 2003: The ocean’s response to North Atlantic Oscillation variability. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 113–146.

  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., C. Smith, and C. S. Bretherton, 2007: Singular-value decomposition of wintertime sea surface temperature and 500-mb height anomalies. J. Climate, 5, 541560.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., L. Ricciardulli, K. Hilburn, and C. Mears, 2007: How much more rain will global warming bring? Science, 317, 233235.

  • Xue, H., J. M. Bane, and L. M. Goodman, 1995: Modification of the Gulf Stream through strong air–sea interactions in winter: Observations and numerical simulations. J. Phys. Oceanogr., 25, 533557.

    • Search Google Scholar
    • Export Citation
  • Yu, L., 2007: Global variations in oceanic evaporation (1958–2005): The role of the changing wind speed. J. Climate, 20, 53765390.

  • Yu, L., and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527539.

    • Search Google Scholar
    • Export Citation
  • Yu, L., and R. A. Weller, 2009: Global ocean heat fluxes. Bull. Amer. Meteor. Soc., 90, S1S196.

  • Yu, L., X. Jin, and R. A. Weller, 2008: Multidecade global flux datasets from the Objectively Analyzed Air-sea Fluxes (OAFlux) Project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution OAFlux Project Tech. Rep. OA-2008-01, 64 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4649 3981 2022
PDF Downloads 426 201 10