Reconciling the Spatial Distribution of the Surface Temperature Trends in the Southeastern United States

V. Misra Department of Earth, Ocean and Atmospheric Science, and Center for Ocean–Atmospheric Prediction Studies, The Florida State University, Tallahassee, Florida

Search for other papers by V. Misra in
Current site
Google Scholar
PubMed
Close
,
J.-P. Michael Department of Earth, Ocean and Atmospheric Science, and Center for Ocean–Atmospheric Prediction Studies, The Florida State University, Tallahassee, Florida

Search for other papers by J.-P. Michael in
Current site
Google Scholar
PubMed
Close
,
R. Boyles Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina

Search for other papers by R. Boyles in
Current site
Google Scholar
PubMed
Close
,
E. P. Chassignet Department of Earth, Ocean and Atmospheric Science, and Center for Ocean–Atmospheric Prediction Studies, The Florida State University, Tallahassee, Florida

Search for other papers by E. P. Chassignet in
Current site
Google Scholar
PubMed
Close
,
M. Griffin Center for Ocean–Atmospheric Prediction Studies, and Florida Climate Center, The Florida State University, Tallahassee, Florida

Search for other papers by M. Griffin in
Current site
Google Scholar
PubMed
Close
, and
J. J. O’Brien Department of Earth, Ocean and Atmospheric Science, Center for Ocean–Atmospheric Prediction Studies, and Florida Climate Center, The Florida State University, Tallahassee, Florida

Search for other papers by J. J. O’Brien in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study attempts to explain the considerable spatial heterogeneity in the observed linear trends of monthly mean maximum and minimum temperatures (Tmax and Tmin) from station observations in the southeastern (SE) United States (specifically Florida, Alabama, Georgia, South Carolina, and North Carolina). In a majority of these station sites, the warming trends in Tmin are stronger in urban areas relative to rural areas. The linear trends of Tmin in urban areas of the SE United States are approximately 7°F century−1 compared to about 5.5°F century−1 in rural areas. The trends in Tmax show weaker warming (or stronger cooling) trends with irrigation, while trends in Tmin show stronger warming trends. This functionality of the temperature trends with land features also shows seasonality, with the boreal summer season showing the most consistent relationship in the trends of both Tmax and Tmin. This study reveals that linear trends in Tmax in the boreal summer season show a cooling trend of about 0.5°F century−1 with irrigation, while the same observing stations on an average display warming trends in Tmin of about 3.5°F century−1. The seasonality and the physical consistency of these relationships with existing theories may suggest that urbanization and irrigation have a nonnegligible influence on the spatial heterogeneity of the surface temperature trends over the SE United States. The study also delineates the caveats and limitations of the conclusions reached herein due to the potential influence of perceived nonclimatic discontinuities (which incidentally could also have a seasonal cycle) that have not been taken into account.

Corresponding author address: V. Misra, Earth, Ocean and Atmospheric Science, The Florida State University, 1017 Academic Way, Tallahassee, FL 32306. E-mail: vmisra@fsu.edu

Abstract

This study attempts to explain the considerable spatial heterogeneity in the observed linear trends of monthly mean maximum and minimum temperatures (Tmax and Tmin) from station observations in the southeastern (SE) United States (specifically Florida, Alabama, Georgia, South Carolina, and North Carolina). In a majority of these station sites, the warming trends in Tmin are stronger in urban areas relative to rural areas. The linear trends of Tmin in urban areas of the SE United States are approximately 7°F century−1 compared to about 5.5°F century−1 in rural areas. The trends in Tmax show weaker warming (or stronger cooling) trends with irrigation, while trends in Tmin show stronger warming trends. This functionality of the temperature trends with land features also shows seasonality, with the boreal summer season showing the most consistent relationship in the trends of both Tmax and Tmin. This study reveals that linear trends in Tmax in the boreal summer season show a cooling trend of about 0.5°F century−1 with irrigation, while the same observing stations on an average display warming trends in Tmin of about 3.5°F century−1. The seasonality and the physical consistency of these relationships with existing theories may suggest that urbanization and irrigation have a nonnegligible influence on the spatial heterogeneity of the surface temperature trends over the SE United States. The study also delineates the caveats and limitations of the conclusions reached herein due to the potential influence of perceived nonclimatic discontinuities (which incidentally could also have a seasonal cycle) that have not been taken into account.

Corresponding author address: V. Misra, Earth, Ocean and Atmospheric Science, The Florida State University, 1017 Academic Way, Tallahassee, FL 32306. E-mail: vmisra@fsu.edu
Save
  • Baker, D. G., 1975: Effect of observation time on mean temperature estimation. J. Appl. Meteor., 14, 471476.

  • Bonfils, C., and D. Lobell, 2007: Empirical evidence for a recent slowdown in irrigation-induced cooling. Proc. Natl. Acad. Sci. USA, 104, 13 58213 587, doi:10.1073/pnas.0700144104.

    • Search Google Scholar
    • Export Citation
  • Christy, J. R., 2002: When was the hottest summer? Bull. Amer. Meteor. Soc., 83, 723734.

  • Christy, J. R., W. B. Norris, and R. T. McNider, 2009: Surface temperature variations in East Africa and possible causes. J. Climate, 22, 33423356.

    • Search Google Scholar
    • Export Citation
  • Dai, A., K. E. Trenberth, and T. R. Karl, 1999: Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range. J. Climate, 12, 24512473.

    • Search Google Scholar
    • Export Citation
  • DeGaetano, A. T., and R. J. Allen, 2002: Trends in twentieth-century temperature extremes across the United States. J. Climate, 15, 31883205.

    • Search Google Scholar
    • Export Citation
  • Doesken, N. J., 2005: The National Weather Service MMTS (Maximum-Minimum Temperature System)—20 years after. Preprints, 15th Conf. on Applied Climatology/13th Symp. on Meteorological Observations and Instrumentation, Savannah, GA, Amer. Meteor. Soc., JP1.26. [Available online at http://ams.confex.com/ams/pdfpapers/91613.pdf.]

  • Efron, B., and R. J. Tibshirani, 1993. An Introduction to the Bootstrap. Chapman and Hall, 436 pp.

  • Elsner, J. B., H. E. Fuelberg, R. L. Deal III, J. A. Orrock, G. S. Lehmiller, and P. H. Ruscher, 1996: Tallahassee, Florida, minimum temperature anomaly: Description and speculations. Bull. Amer. Meteor. Soc., 77, 721728.

    • Search Google Scholar
    • Export Citation
  • Feddema, J. J., K. Oleson, G. Bonan, L. O. Mearns, L. Buja, W. M. Washington, and G. Meehl, 2005: How important is land cover change for simulating future climates? Science, 310, 16741678.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., A. J. Pitman, M. H. England, and P. Pegion, 2009: Regional and global impacts of land cover change and sea surface temperature anomalies. J. Climate, 22, 32483269.

    • Search Google Scholar
    • Export Citation
  • Huang, N. E., and Z. Wu, 2008: A review on Hilbert–Huang transform: The method and its applications on geophysical studies. Rev. Geophys., 46, RG2006, doi:10.1029/2007RG000228.

    • Search Google Scholar
    • Export Citation
  • Huang, N. E., Z. Shen, and S. R. Long, 1998: The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis. Proc. Roy. Soc. London, 454, 712723.

    • Search Google Scholar
    • Export Citation
  • Hubbard, K. G., and X. Lin, 2006: Reexamination of instrument change effects in the U.S. Historical Climatology Network. Geophys. Res. Lett., 33, L15710, doi:10.1029/2006GL027069.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and M. Cai, 2003: Impact of urbanization and land-use change on climate. Nature, 423, 528531.

  • Karl, T. R., and P. D. Jones, 1989: Urban bias in area averaged surface air temperature trends. Bull. Amer. Meteor. Soc., 70, 265270.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., C. N. Williams Jr., P. J. Young, and W. M. Wendland, 1986: A model to estimate the time of observation bias associated with monthly mean maximum, minimum, and mean temperature for the United States. J. Climate Appl. Meteor., 25, 145160.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., and Coauthors, 1988a: Time Series of Regional Averages of Maximum, Minimum, and Average Temperature and Diurnal Temperature Range across the United States: 1901–1984. Historical Climatology Series, Vols. 4–5, National Climatic Data Center, 107 pp.

  • Karl, T. R., H. F. Diaz, and G. Kukla, 1988b: Urbanization: Its detection and effect in the United States climate record. J. Climate, 1, 10991123.

    • Search Google Scholar
    • Export Citation
  • Kueppers, L. M., M. A. Snyder, and L. C. Sloan, 2007: Irrigation cooling effect: Regional climate forcing by land-use change. Geophys. Res. Lett., 34, L03703, doi:10.1029/2006GL028679.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., X. Z. Liang, J. Zhu, and Y. Lin, 2006: Can CGCMs simulate the twentieth-century “warming hole” in the central United States? J. Climate, 19, 41374153.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and J. Williams, 1978: The correlation between temperature and precipitation in the United States and Europe. Mon. Wea. Rev., 106, 142147.

    • Search Google Scholar
    • Export Citation
  • McCarthy, M. P., M. J. Best, and R. A. Betts, 2010: Climate change in cities due to global warming and urban effects. Geophys. Res. Lett., 37, L09705, doi:10.1029/2010GL042845.

    • Search Google Scholar
    • Export Citation
  • McClave, J. T., and F. H. Dietrich II, 1994: Statistics. MacMillan, 967 pp.

  • Menne, M. J., and C. N. Williams Jr., 2009: Homogenization of temperature series via pairwise comparisons. J. Climate, 22, 17001717.

  • Menne, M. J., C. N. Williams Jr., and R. S. Vose, 2009: The U.S. Historical Climatology Network monthly temperature data, version 2. Bull. Amer. Meteor. Soc., 90, 9931007.

    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1973: City size and the urban heat island. Atmos. Environ., 7, 769779.

  • Pan, Z., R. W. Arritt, E. S. Takle, W. J. Gutowski Jr., C. J. Anderson, and M. Segal, 2004: Altered hydrologic feedback in a warming climate introduces a “warming hole.” Geophys. Res. Lett., 31, L17109, doi:10.1029/2004GL020528.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Sr., 2008: A broader view of the role of humans in the climate system. Phys. Today, 61, 5455.

  • Pielke, R. A., Sr., and Coauthors, 2007: Unresolved issues with the assessment of multi-decadal global land surface temperature trends. J. Geophys. Res., 112, D24S08, doi:10.1029/2006JD008229.

    • Search Google Scholar
    • Export Citation
  • Portmann, R. W., S. Solomon, and G. C. Hegel, 2009: Spatial and seasonal patterns in climate change, temperatures, and precipitation across the United States. Proc. Natl. Acad. Sci. USA, 106, 73247329.

    • Search Google Scholar
    • Export Citation
  • Puma, M. J., and B. I. Cook, 2010: Effects of irrigation on global climate during the 20th century. J. Geophys. Res., 115, D16120, doi:10.1029/2010JD014122.

    • Search Google Scholar
    • Export Citation
  • Quayle, R. G., D. R. Easterling, T. R. Karl, and P. Y. Hughes, 1991: Effects of recent thermometer changes in the Cooperative Network. Bull. Amer. Meteor. Soc., 72, 17181723.

    • Search Google Scholar
    • Export Citation
  • Robinson, W. A., R. Reudy, and J. E. Hansen, 2002: General circulation model simulations of recent cooling in the east-central United States. J. Geophys. Res., 107, 4748, doi:10.1029/2001JD001577.

    • Search Google Scholar
    • Export Citation
  • Sacks, W. J., B. I. Cook, N. Buenning, S. Levis, and J. H. Helkowski, 2009: Effects of global irrigation on the near surface climate. Climate Dyn., 33, 159175, doi:10.1007/s00382-008-0445-z.

    • Search Google Scholar
    • Export Citation
  • Siebert, S., J. Hoogeveen, and K. Frenken, 2006: Irrigation in Africa, Europe and Latin America: Update of the Digital Global Map of Irrigation Areas to version 4. Frankfurt Hydrology Paper 05, University of Frankfurt (Main), Frankfurt am Main, Germany, and FAO, Rome, Italy, 134 pp. [Available online at http://www.fao.org/nr/water/aquastat/irrigationmap/index60.stm.]

  • Trenberth, K. E., and D. J. Shea, 2005: Relationships between precipitation and surface temperature. Geophys. Res. Lett., 32, L14703, doi:10.1029/2005GL022760.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and Coauthors, 2007: Observations: Surface and atmospheric climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 235–336.

  • USDA-ERS, cited 2011: ERS/USDA Data Population-Interaction Zones for Agriculture (PIZA): Overview. [Available online at http://www.ers.usda.gov/Data/PopulationInteractionZones/overview.htm.]

  • Wendland, W. M., and W. Armstrong, 1993: Comparison of maximum–minimum resistance and liquid-in-glass thermometer records. J. Atmos. Oceanic Technol., 10, 233237.

    • Search Google Scholar
    • Export Citation
  • Wu, Z. H., and N. E. Huang, 2009: Ensemble empirical mode decomposition: A noise assisted data analysis method. Adv. Adaptive Data Anal., 1, 141.

    • Search Google Scholar
    • Export Citation
  • Wu, Z. H., N. E. Huang, S. R. Long, and C.-K. Peng, 2007: On the trend, detrending, and variability of nonlinear and nonstationary time series. Proc. Natl. Acad. Sci. USA, 104, 14 88914 894, doi: 10.1073/pnas.0701020104.

    • Search Google Scholar
    • Export Citation
  • Wu, Z. H., N. E. Huang, J. M. Wallace, B. V. Smoliak, and X. Chen, 2011: On the time-varying trend in global mean surface temperature. Climate Dyn., 37, 759773, doi: 10.1007/s00382-011-1128-8.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., A. J. Pitman, and T. N. Chase, 2001: The impact of land cover change on the atmospheric circulation. Climate Dyn., 17, 467477.

    • Search Google Scholar
    • Export Citation
  • Zhou, L., and Coauthors, 2008: Spatial dependence of diurnal temperature range trends on precipitation from 1950 to 2004. Climate Dyn., 32, 429440, doi:10.1007/s00382-008-0387-5.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 910 503 34
PDF Downloads 254 69 7