ENSO’s Impact on the Gap Wind Regions of the Eastern Tropical Pacific Ocean

Michael A. Alexander NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Michael A. Alexander in
Current site
Google Scholar
PubMed
Close
,
Hyodae Seo Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Hyodae Seo in
Current site
Google Scholar
PubMed
Close
,
Shang Ping Xie International Pacific Research Center, and the Department of Meteorology, University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by Shang Ping Xie in
Current site
Google Scholar
PubMed
Close
, and
James D. Scott Cooperative Institute for Research in Environmental Sciences, University of Colorado, and NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by James D. Scott in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The recently released NCEP Climate Forecast System Reanalysis (CFSR) is used to examine the response to ENSO in the northeast tropical Pacific Ocean (NETP) during 1979–2009. The normally cool Pacific sea surface temperatures (SSTs) associated with wind jets through the gaps in the Central American mountains at Tehuantepec, Papagayo, and Panama are substantially warmer (colder) than the surrounding ocean during El Niño (La Niña) events. Ocean dynamics generate the ENSO-related SST anomalies in the gap wind regions as the surface fluxes damp the SSTs anomalies, while the Ekman heat transport is generally in quadrature with the anomalies. The ENSO-driven warming is associated with large-scale deepening of the thermocline; with the cold thermocline water at greater depths during El Niño in the NETP, it is less likely to be vertically mixed to the surface, particularly in the gap wind regions where the thermocline is normally very close to the surface. The thermocline deepening is enhanced to the south of the Costa Rica Dome in the Papagayo region, which contributes to the local ENSO-driven SST anomalies. The NETP thermocline changes are due to coastal Kelvin waves that initiate westward-propagating Rossby waves, and possibly ocean eddies, rather than by local Ekman pumping. These findings were confirmed with regional ocean model experiments: only integrations that included interannually varying ocean boundary conditions were able to simulate the thermocline deepening and localized warming in the NETP during El Niño events; the simulation with variable surface fluxes, but boundary conditions that repeated the seasonal cycle, did not.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-11-00320.s1.

Corresponding author address: Michael Alexander, NOAA/Earth System Research Laboratory, R/PSD1, 325 Broadway, Boulder, CO 80305. E-mail: michael.alexander@noaa.gov

Abstract

The recently released NCEP Climate Forecast System Reanalysis (CFSR) is used to examine the response to ENSO in the northeast tropical Pacific Ocean (NETP) during 1979–2009. The normally cool Pacific sea surface temperatures (SSTs) associated with wind jets through the gaps in the Central American mountains at Tehuantepec, Papagayo, and Panama are substantially warmer (colder) than the surrounding ocean during El Niño (La Niña) events. Ocean dynamics generate the ENSO-related SST anomalies in the gap wind regions as the surface fluxes damp the SSTs anomalies, while the Ekman heat transport is generally in quadrature with the anomalies. The ENSO-driven warming is associated with large-scale deepening of the thermocline; with the cold thermocline water at greater depths during El Niño in the NETP, it is less likely to be vertically mixed to the surface, particularly in the gap wind regions where the thermocline is normally very close to the surface. The thermocline deepening is enhanced to the south of the Costa Rica Dome in the Papagayo region, which contributes to the local ENSO-driven SST anomalies. The NETP thermocline changes are due to coastal Kelvin waves that initiate westward-propagating Rossby waves, and possibly ocean eddies, rather than by local Ekman pumping. These findings were confirmed with regional ocean model experiments: only integrations that included interannually varying ocean boundary conditions were able to simulate the thermocline deepening and localized warming in the NETP during El Niño events; the simulation with variable surface fluxes, but boundary conditions that repeated the seasonal cycle, did not.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-11-00320.s1.

Corresponding author address: Michael Alexander, NOAA/Earth System Research Laboratory, R/PSD1, 325 Broadway, Boulder, CO 80305. E-mail: michael.alexander@noaa.gov

Supplementary Materials

    • Supplemental Materials (DOCX 4.64 MB)
Save
  • Capotondi, A., and M. A. Alexander, 2001: Rossby waves in the tropical North Pacific and their role in decadal thermocline variability. J. Phys. Oceanogr., 31, 34963515.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., G. A. Chepurin, X. Cao, and B. S. Giese, 2000: A Simple Ocean Data Assimilation analysis of the global upper ocean 1950–95. Part I: Methodology. J. Phys. Oceanogr., 30, 294309.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and R. E. Davis, 1982: Monthly mean sea level variability along the west coast of North America. J. Phys. Oceanogr., 12, 757784.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and S.-P. Xie, 2010: Coupled ocean-atmosphere interaction at oceanic mesoscales. Oceanography, 23, 5269.

  • Chelton, D. B., R. A. de Szoeke, M. G. Schlax, K. E. Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. H. Freilich, and S. K. Esbensen, 2000: Satellite observations of the wind jets off the Pacific coast of Central America. Part I: Case studies and statistical characteristics. Mon. Wea. Rev., 128, 19932018.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., 1988: Inertial wind path and sea surface temperature patterns near the Gulf of Tehuantepec and Gulf of Papagayo. J. Geophys. Res., 93, 15 49115 501.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., and S. van Gorder, 1994: On ENSO coastal currents and sea levels. J. Phys. Oceanogr., 24, 661680.

  • Enfield, D. B., and J. S. Allen, 1980: On the structure and dynamics of monthly mean sea level anomalies along the Pacific coast of North and South America. J. Phys. Oceanogr., 10, 557588.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air–sea fluxes for Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment. J. Geophys. Res., 101, 37473764.

    • Search Google Scholar
    • Export Citation
  • Fiedler, P. C., 2002: The annual cycle and biological effects of the Costa Rica Dome. Deep-Sea Res. I, 49, 321338.

  • Fu, L.-L., and B. Qiu, 2002: Low-frequency variability of the North Pacific Ocean: The roles of boundary- and wind-driven baroclinic Rossby waves. J. Geophys. Res., 107, 3220, doi:10.1029/2001JC001131.

    • Search Google Scholar
    • Export Citation
  • Furue, R., J. P. McCreary Jr., and Z. Yu, 2009: Dynamics of the Northern Tsuchiya Jet. J. Phys. Oceanogr., 39, 20242051.

  • Haidvogel, D. B., H. G. Arango, K. Hedstrom, A. Beckmann, P. Malanotte-Rizzoli, and A. F. Shchepetkin, 2000: Model evaluation experiments in the North Atlantic basin: Simulations in nonlinear terrain-following coordinates. Dyn. Atmos. Oceans, 32, 239281.

    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., and N. K. Larkin, 1998: El Niño–Southern Oscillation sea surface temperature and wind anomalies. Rev. Geophys., 36, 353399.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., V. E. Kousky, V. B. S. Silva, E. Becker, and P. Xie, 2010: Intercomparison of daily precipitation statistics over the United States in observations and in NCEP reanalysis products. J. Climate, 23, 46374650.

    • Search Google Scholar
    • Export Citation
  • Hoffman, E. E., A. J. Busalacchi, and J. J. O’Brien, 1981: Wind generation of the Costa Rican Dome. Science, 214, 552554.

  • Karnauskas, K. B., A. J. Busalacchi, and R. Murtugudde, 2008: Low-frequency variability and remote forcing of gap winds over the East Pacific warm pool. J. Climate, 21, 49014918.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., 1990: Observations of long Rossby waves in the northern tropical Pacific. J. Geophys. Res., 95, 51835217.

  • Kessler, W. S., 2002: Mean three-dimensional circulation in the northeast tropical Pacific. J. Phys. Oceanogr., 32, 24572471.

  • Kessler, W. S., 2006: The circulation of the eastern tropical Pacific: A review. Prog. Oceanogr., 69, 181217.

  • Kessler, W. S., and J. P. McCreary, 1993: The annual wind-driven Rossby wave in the subthermocline equatorial Pacific. J. Phys. Oceanogr., 23, 11921207.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., and M. J. McPhaden, 1995: Oceanic equatorial waves and the 1991–93 El Niño. J. Climate, 8, 17571774.

  • Killworth, P., D. B. Chelton, and R. A. de Szoeke, 1997: The speed of observed and theoretical long extratropical planetary waves. J. Phys. Oceanogr., 27, 19461966.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing—A review and a model with a nonlocal boundary-layer parameterization. Rev. Geophys., 32, 363403.

    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., and D. E. Harrison, 2002: ENSO warm (El Niño) and cold (La Niña) event life cycles: Ocean surface anomaly patterns, their symmetries, asymmetries, and implications. J. Climate, 15, 11181140.

    • Search Google Scholar
    • Export Citation
  • Liang, J. H., J. C. McWilliams, and N. Gruber, 2009: The high-frequency response of the ocean to mountain gap winds in the northeastern tropical Pacific. J. Geophys. Res., 114, C12005, doi:10.1029/2009JC005370.

    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., H. S. Lee, and D. B. Enfield, 1989: The response of the coastal ocean to strong offshore winds: With application to circulations in the Gulfs of Tehuantepec and Papagayo. J. Mar. Res., 47, 81109.

    • Search Google Scholar
    • Export Citation
  • McPhadden, M. J., and X. Zhang, 2009: Asymmetry in zonal phase propagation of ENSO sea surface temperature anomalies. Geophys. Res. Lett., 36, L13703, doi:10.1029/2009GL038774.

    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., and C. Deser, 2010: Asymmetry in the duration of El Niño and La Niña. J. Climate, 23, 58265843.

  • Palacios, D. M., and S. J. Bograd, 2005: A census of Tehuantepec and Papagayo eddies in the northeastern tropical Pacific. Geophys. Res. Lett., 32, L23606, doi:10.1029/2005GL024324.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354384.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution blended analyses for sea surface temperature. J. Climate, 20, 54735496.

    • Search Google Scholar
    • Export Citation
  • Romero-Centeno, R., J. Zavala-Hidalgo, A. Gallegos, and J. J. O’Brien, 2003: Isthmus of Tehuantepec wind climatology and ENSO signal. J. Climate, 16, 26282639.

    • Search Google Scholar
    • Export Citation
  • Romero-Centeno, R., J. Zavala-Hidalgo, and G. B. Raga, 2007: Midsummer gap winds and low-level circulation over the eastern tropical Pacific. J. Climate, 20, 37683784.

    • Search Google Scholar
    • Export Citation
  • Rowe, G. D., E. Firing, and G. C. Johnson, 2000: Pacific equatorial subsurface countercurrent velocity, transport, and potential vorticity. J. Phys. Oceanogr., 30, 11721187.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057.

  • Schopf, P. S., D. L. T. Anderson, and R. Smith, 1981: Beta-dispersion of low frequency Rossby waves. Dyn. Atmos. Oceans, 5, 187214.

  • Seager, R., M. B. Blumenthal, and Y. Kushnir, 1995: An advective atmospheric mixed-layer model for ocean modeling purposes—Global simulation of surface heat fluxes. J. Climate, 8, 19511964.

    • Search Google Scholar
    • Export Citation
  • Seo, H., A. J. Miller, and J. O. Roads, 2007: The Scripps Coupled Ocean–Atmosphere Regional (SCOAR) model, with applications in the eastern Pacific sector. J. Climate, 20, 381402.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 1998: Quasi-monotone advection scheme based on explicit locally adaptive dissipation. Mon. Wea. Rev., 126, 15411580.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate ocean model. Ocean Modell., 9, 347404.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., and Coauthors, 2008: Air-sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45, 274319.

  • Steenburgh, W. J., D. M. Schultz, and B. A. Colle, 1998: The structure and evolution of gap outflow over the Gulf of Tehuantepec, Mexico. Mon. Wea. Rev., 126, 26732691.

    • Search Google Scholar
    • Export Citation
  • Strub, P. T., and C. James, 2002: The 1997-1998 El Niño signal along the SE and NE Pacific boundaries—An altimetric view. Prog. Oceanogr., 54 (1–4), 439458.

    • Search Google Scholar
    • Export Citation
  • Sun, F., and J.-Y. Yu, 2006: Impacts of Central America gap winds on the SST annual cycle in the eastern Pacific warm pool. Geophys. Res. Lett., 33, L06710, doi:10.1029/2005GL024700.

    • Search Google Scholar
    • Export Citation
  • Umatani, S., and T. Yamagata, 1991: Response of the eastern tropical Pacific to meridional migration of the ITCZ: The generation of the Costa Rica Dome. J. Phys. Oceanogr., 21, 346363.

    • Search Google Scholar
    • Export Citation
  • White, W. B., 1977: Annual forcing of baroclinic long waves in the tropical North Pacific Ocean. J. Phys. Oceanogr., 7, 5061.

  • Willett, C. S., R. Leben, and M. F. Lavín, 2006: Eddies and mesoscale processes in the eastern tropical Pacific: A review. Prog. Oceanogr., 69, 218238.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., 2004: Satellite observations of cool ocean–atmosphere interaction. Bull. Amer. Meteor. Soc., 85, 195208.

  • Xie, S.-P., H. Xu, W. S. Kessler, and M. Nonaka, 2005: Air–sea interaction over the eastern Pacific warm pool, gap winds, thermocline dome, and atmospheric convection. J. Climate, 18, 520.

    • Search Google Scholar
    • Export Citation
  • Yu, L., and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527539.

    • Search Google Scholar
    • Export Citation
  • Zamudio, L., A. P. Leonardi, S. D. Meyers, and J. J. O’Brien, 2001: ENSO and eddies on the southwest coast of Mexico. Geophys. Res. Lett., 28, 1316.

    • Search Google Scholar
    • Export Citation
  • Zamudio, L., H. E. Hurlburt, E. J. Metzger, S. L. Morey, J. J. O’Brien, C. E. Tilburg, and J. Zavala-Hidalgo, 2006: Interannual variability of Tehuantepec eddies. J. Geophys. Res., 111, C05001, doi:10.1029/2005JC003182.

    • Search Google Scholar
    • Export Citation
  • Zhang, H.-M., J. J. Bates, and R. W. Reynolds, 2006: Assessment of composite global sampling: Sea surface wind speed. Geophys. Res. Lett., 33, L17714, doi:10.1029/2006GL027086.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 550 116 7
PDF Downloads 308 110 12