Twentieth-Century Surface Temperature Trends in the Western Ross Sea, Antarctica: Evidence from a High-Resolution Ice Core

Kate E. Sinclair Joint Antarctic Research Institute, GNS Science, Wellington, New Zealand

Search for other papers by Kate E. Sinclair in
Current site
Google Scholar
PubMed
Close
,
Nancy A. N. Bertler Joint Antarctic Research Institute, Victoria University of Wellington and GNS Science, Wellington, New Zealand

Search for other papers by Nancy A. N. Bertler in
Current site
Google Scholar
PubMed
Close
, and
Tas D. van Ommen Australian Antarctic Division, and Antarctic Climate and Ecosystems CRC, University of Tasmania, Hobart, Tasmania, Australia

Search for other papers by Tas D. van Ommen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A 125-yr ice core record of climate from the Whitehall Glacier ice divide provides exceptionally high-resolution stable isotope data from the northwest margin of the Ross Sea, Antarctica. This is the only proxy data available to extend the instrumental record of temperature in this region, where little is known about climate variability over the past two centuries. Using ECMWF Interim Re-Analysis (ERA-Interim) data, this study develops a precipitation-weighted δ18O-temperature transfer function of 0.62‰ °C−1, which is comparable to other proximal ice cores, such as Taylor, Talos, and Law Domes. Reconstructed mean annual temperatures show no significant change between 1882 and 2006. However, a decrease in cold season [April–September (AMJJAS)] temperatures of −1.59° ± 0.84°C decade−1 (at 90% confidence) is observed since 1979. This cooling trend is in contrast to a surface temperature record from Ross Island (Scott Base) where significant spring warming is observed. It is also coincident with a positive trend in the southern annular mode, which is linked to stronger southerly winds and increased sea ice extent and duration in the western Ross Sea.

Corresponding author address: Kate Sinclair, National Isotope Centre, GNS Science, 30 Gracefield Rd., P.O. Box 30-386, Lower Hutt 5040, Wellington, New Zealand. E-mail: k.sinclair@gns.cri.nz

Abstract

A 125-yr ice core record of climate from the Whitehall Glacier ice divide provides exceptionally high-resolution stable isotope data from the northwest margin of the Ross Sea, Antarctica. This is the only proxy data available to extend the instrumental record of temperature in this region, where little is known about climate variability over the past two centuries. Using ECMWF Interim Re-Analysis (ERA-Interim) data, this study develops a precipitation-weighted δ18O-temperature transfer function of 0.62‰ °C−1, which is comparable to other proximal ice cores, such as Taylor, Talos, and Law Domes. Reconstructed mean annual temperatures show no significant change between 1882 and 2006. However, a decrease in cold season [April–September (AMJJAS)] temperatures of −1.59° ± 0.84°C decade−1 (at 90% confidence) is observed since 1979. This cooling trend is in contrast to a surface temperature record from Ross Island (Scott Base) where significant spring warming is observed. It is also coincident with a positive trend in the southern annular mode, which is linked to stronger southerly winds and increased sea ice extent and duration in the western Ross Sea.

Corresponding author address: Kate Sinclair, National Isotope Centre, GNS Science, 30 Gracefield Rd., P.O. Box 30-386, Lower Hutt 5040, Wellington, New Zealand. E-mail: k.sinclair@gns.cri.nz
Save
  • Bertler, N. A. N., P. J. Barrett, P. A. Mayewski, R. L. Fogt, K. J. Kreutz, and J. Shulmeister, 2004: El Niño suppresses Antarctic warming. Geophys. Res. Lett., 31, L15207, doi:10.1029/2004GL020749.

    • Search Google Scholar
    • Export Citation
  • Bertler, N. A. N., P. A. Mayewski, and L. Carter, 2011: Cold conditions in Antarctica during the Little Ice Age—Implications for abrupt climate change mechanisms. Earth Planet. Sci. Lett., 308, 4151, doi:10.1016/j.epsl.2011.05.021.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., and S. Wang, 2008: A review of the temporal and spatial variability of Arctic and Antarctic atmospheric circulation based upon ERA-40. Dyn. Atmos. Oceans, 44, 213243.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., J. P. Nicolas, and A. J. Monaghan, 2011: An assessment of precipitation changes over Antarctica and the Southern Ocean since 1989 in contemporary global reanalyses. J. Climate, 24, 41894209.

    • Search Google Scholar
    • Export Citation
  • Bull, J. R., 2009: Stable isotope, major and trace element chemistry of modern snow from Evans Piedmont Glacier, Antarctica: Insights into potential source regions and relationships of glaciochemistry to atmospheric circulation and vigour. M.S. thesis, School of Geography, Environment and Earth Sciences, Victoria University of Wellington, 207 pp. [Available online at http://researcharchive.vuw.ac.nz/handle/10063/1124.]

    • Search Google Scholar
    • Export Citation
  • Chapman, W. L., and J. E. Walsh, 2007: A synthesis of Antarctic temperatures. J. Climate, 20, 40964117.

  • Charles, C. D., D. Rind, J. Jouzel, R. D. Koster, and R. G. Fairbanks, 1995: Seasonal precipitation timing and ice core records. Science, 269, 247248, doi:10.1126/science.269.5221.247.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., and F. Nishio, 2008: Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/ I, and SMMR data. J. Geophys. Res., 113, C02S07, doi:10.1029/2007JC004257.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., R. Kwok, S. Martin, and A. L. Gordon, 2011: Variability and trends in sea ice extent and production in the Ross Sea. J. Geophys. Res., 116, C04021, doi:10.1029/2010JC006391.

    • Search Google Scholar
    • Export Citation
  • Cuffey, K. M., and E. J. Steig, 1998: Isotopic diffusion in polar firn: Implications for interpretation of seasonal climate parameters in ice-core records, with emphasis on central Greenland. J. Glaciol., 44, 273284.

    • Search Google Scholar
    • Export Citation
  • Dansgaard, W., 1964: Stable isotopes in precipitation. Tellus, 16, 436468, doi:10.1111/j.2153-3490.1964.tb00181.x.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Fogt, R. L., and D. H. Bromwich, 2006: Decadal variability of the ENSO teleconnection to the high-latitude South Pacific governed by coupling with the southern annular mode. J. Climate, 19, 979997.

    • Search Google Scholar
    • Export Citation
  • Helsen, M. M., R. S. W. Van de Wal, M. R. Van den Broeke, V. Masson-Delmotte, H. A. J. Meijer, M. P. Scheele, and M. Werner, 2006: Modeling the isotopic composition of Antarctic snow using backward trajectories: Simulation of snow pit records. J. Geophys. Res., 111, D15109, doi:10.1029/2005JD006524.

    • Search Google Scholar
    • Export Citation
  • Jouzel, J., and Coauthors, 1997: Validity of the temperature reconstruction from water isotopes in ice cores. J. Geophys. Res., 102 (C12), 26 47126 487.

    • Search Google Scholar
    • Export Citation
  • Kroger, C., J. Thomson, N. A. N. Bertler, and U. Morgenstern, 2006: Ice core stratigraphy using dual energy x-ray absorptiometry (DEXA). J. Phys. Conf. Series, 41, 315322, doi:10.1088/1742-6596/41/1/034.

    • Search Google Scholar
    • Export Citation
  • Markle, B. R., N. A. N. Bertler, K. E. Sinclair, and S. B. Sneed, 2012: Synoptic variability in the Ross Sea region, Antarctica, as seen from back-trajectory modeling and ice core analysis. J. Geophys. Res., 117, D02113, doi:10.1029/2011JD016437.

    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., 2009: On the annual and semi-annual cycles of precipitation across Antarctica. Int. J. Climatol., 29 (15), 22982308, doi:10.1002/joc.1810.

    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., A. Orr, N. P. M. van Lipzig, and J. C. King, 2006: The impact of a changing Southern Hemisphere annular mode on Antarctic Peninsula summer temperature. J. Climate, 19, 53885404.

    • Search Google Scholar
    • Export Citation
  • Masson, V., and Coauthors, 2000: Holocene climate variability in Antarctica based on 11 ice-core isotopic records. Quat. Res., 54, 348358.

    • Search Google Scholar
    • Export Citation
  • Masson-Delmotte, V., and Coauthors, 2008: A review of Antarctic surface snow isotopic composition: Observations, atmospheric circulation, and isotopic modelling. J. Climate, 21, 33593387.

    • Search Google Scholar
    • Export Citation
  • Mayewski, P. A., and Coauthors, 2005: The International Trans-Antarctic Scientific Expedition (ITASE): An overview. Ann. Glaciol., 41, 180185, doi:10.3189/172756405781813159.

    • Search Google Scholar
    • Export Citation
  • Mayewski, P. A., and Coauthors, 2009: State of the Antarctic and Southern Ocean Climate System (SASOCS). Rev. Geophys., 47, RG1003, doi:10.1029/2007RG000231.

    • Search Google Scholar
    • Export Citation
  • Monaghan, A. J., and Coauthors, 2006: Insignificant change in Antarctic snowfall since the International Geophysical Year. Science, 313, 827831, doi:10.1126/science.1128243.

    • Search Google Scholar
    • Export Citation
  • Monaghan, A. J., D. H. Bromwich, W. Chapman, and J. C. Comiso, 2008: Recent variability and trends of Antarctic near-surface temperature. J. Geophys. Res., 113, D04105, doi:10.1029/2007JD009094.

    • Search Google Scholar
    • Export Citation
  • Nicolas, J., and D. H. Bromwich, 2011: Marine signature in West Antarctica. J. Climate, 24, 4967.

  • Osterberg, E. C., M. J. Handley, S. B. Sneed, P. A. Mayewski, and K. J. Kreutz, 2006: Continuous ice core melter system with discrete sampling for major ion, trace element, and stable isotope analyses. Environ. Sci. Technol., 40, 33553361.

    • Search Google Scholar
    • Export Citation
  • Rignot, E., J. L. Bamber, M. R. van den Broeke, C. Davis, Y. Li, W. J. van de Berg, and E. van Meijgaard, 2008: Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nat. Geosci., 1, 106110.

    • Search Google Scholar
    • Export Citation
  • Scarchilli, C., M. Frezzotti, and P. M. Ruti, 2010: Snow precipitation at four ice core sites in East Antarctica: Provenance, seasonality and blocking factors. Climate Dyn., 37, 21072125, doi:10.1007/s00382-010-0946-4.

    • Search Google Scholar
    • Export Citation
  • Schneider, D. P., C. Deser, and Y. Okumura, 2011: An assessment and interpretation of the observed warming of West Antarctica in the austral spring. Climate Dyn., 38, 323347, doi:10.1007/s00382-010-0985-x.

    • Search Google Scholar
    • Export Citation
  • Sime, L. C., E. W. Wolff, K. I. C. Oliver, and J. C. Tindall, 2009: Evidence for warmer interglacials in East Antarctic ice cores. Nature, 462, 342345, doi:10.1038/nature08564.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., K. Keay, and E.-P. Lim, 2003: Synoptic activity in the seas around Antarctica. Mon. Wea. Rev., 131, 272288.

  • Sinclair, K. E., N. A. N. Bertler, and W. J. Trompetter, 2010: Synoptic controls on precipitation pathways and snow delivery to high-accumulation ice core sites in the Ross Sea region, Antarctica. J. Geophys. Res., 115, D22112, doi:10.1029/2010JD014383.

    • Search Google Scholar
    • Export Citation
  • Stammerjohn, S. E., D. G. Martinson, R. C. Smith, X. Yuan, and D. J. Rind, 2008: Trends in Antarctic sea ice retreat and advance and their relation to El Niño–Southern Oscillation and the southern annular mode. J. Geophys. Res., 113, C03S90, doi:10.1029/2007JC004269.

    • Search Google Scholar
    • Export Citation
  • Steig, E. J., and Coauthors, 1998: Synchronous climate changes in Antarctica and the North Atlantic. Science, 282, 9295.

  • Steig, E. J., D. L. Moorse, E. D. Waddington, M. Stuiver, P. M. Grootes, P. A. Mayewski, M. S. Twickler, and S. I. Whitlow, 2000: Wisconsinan and Holocene climate history from and ice core at Taylor Dome, western Ross Embayment, Antarctica. Geogr. Ann., 82A, 213235.

    • Search Google Scholar
    • Export Citation
  • Steig, E. J., D. P. Schneider, S. D. Rutherford, M. E. Mann, J. C. Comiso, and D. T. Shindell, 2009: Warming of the Antarctic ice sheet surface since the 1957 International Geophysical Year. Nature, 457, 459462.

    • Search Google Scholar
    • Export Citation
  • Stenni, B., M. Proposito, R. Gragnani, O. Flora, J. Jouzel, S. Falourd, and M. Frezzotti, 2002: Eight centuries of volcanic signal and climate change at Talos Dome (East Antarctica). J. Geophys. Res., 107, 4076, doi:10.1029/2000JD000317.

    • Search Google Scholar
    • Export Citation
  • Thomas, E. R., and T. J. Bracegirdle, 2009: Improving ice core interpretation using in situ and reanalysis data. J. Geophys. Res., 114, D20116, doi:10.1029/2009JD012263.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and A. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 5569, 895899.

  • van Ommen, T., and V. Morgan, 1997: Calibrating the ice core paleothermometer using seasonality. J. Geophys. Res., 102, 93519357.

  • Vinther, B. M., P. D. Jones, K. R. Briffa, H. B. Clausen, K. K. Andersen, D. Dahl-Jensen, and S. J. Johnsen, 2010: Climatic signals in multiple highly resolved stable isotope records from Greenland. Quat. Sci. Rev., 29 (3–4), 522538.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1392 799 247
PDF Downloads 308 68 8