• Badan-Dangon, A., C. E. Dorman, M. A. Merrifield, and C. D. Winant, 1991: The lower atmosphere over the Gulf of California. J. Geophys. Res., 96 C9 16 87716 896.

    • Search Google Scholar
    • Export Citation
  • Barlow, M., S. Nigam, and E. Berbery, 1998: Evolution of the North American monsoon. J. Climate, 11, 22382257.

  • Berbery, E. H., 2001: Mesoscale moisture analysis of the North American monsoon. J. Climate, 14, 121137.

  • Berbery, E. H., and M. S. Fox-Rabinovitz, 2003: Multiscale diagnosis of the North American monsoon system using a variable-resolution GCM. J. Climate, 16, 19291947.

    • Search Google Scholar
    • Export Citation
  • Bieda, S. W., C. L. Castro, S. L. Mullen, A. C. Comrie, and E. Pytlak, 2009: The relationship of transient upper-level troughs to variability of the North American monsoon system. J. Climate, 22, 42134227.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., Y. C. Sud, S. D. Schubert, and G. K. Walker, 2003: Numerical simulation of the large-scale North American monsoon water sources. J. Geophys. Res., 108, 8614, doi:10.1029/2002JD003095.

    • Search Google Scholar
    • Export Citation
  • Bright, D. R., and S. L. Mullen, 2002: The sensitivity of the numerical simulation of the southwest monsoon boundary layer to the choice of PBL turbulence parameterization in MM5. Wea. Forecasting, 17, 99114.

    • Search Google Scholar
    • Export Citation
  • Castro, C. L., T. B. Mckee, and R. A. Pielke Sr., 2001: The relationship of the North American monsoon to tropical and North Pacific sea surface temperatures as revealed by observational analyses. J. Climate, 14, 44494473.

    • Search Google Scholar
    • Export Citation
  • Castro, C. L., R. A. Pielke Sr., and J. O. Adegoke, 2007a: Investigation of the summer climate of the contiguous United States and Mexico using the Regional Atmospheric Modeling System (RAMS). Part I: Model climatology (1950–2002). J. Climate, 20, 38443865.

    • Search Google Scholar
    • Export Citation
  • Castro, C. L., R. A. Pielke Sr., J. O. Adegoke, S. D. Schubert, and P. J. Pegion, 2007b: Investigation of the summer climate of the contiguous United States and Mexico using the Regional Atmospheric Modeling System (RAMS). Part II: Model climate variability. J. Climate, 20, 38663887.

    • Search Google Scholar
    • Export Citation
  • Cerezo-Mota, R., M. Allen, and R. Jones, 2011: Mechanisms controlling precipitation in the northern portion of the North American monsoon. J. Climate, 24, 27712783.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585.

    • Search Google Scholar
    • Export Citation
  • Douglas, A. V., and P. Englehart, 2007: A climatological perspective of transient synoptic features during NAME 2004. J. Climate, 20, 19471954.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State/NCAR Mesoscale Model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121, 14931513.

    • Search Google Scholar
    • Export Citation
  • Farrara, J. D., and J. Yu, 2003: Interannual variations in the southwest U.S. monsoon and sea surface temperature anomalies: A general circulation model study. J. Climate, 16, 17031720.

    • Search Google Scholar
    • Export Citation
  • Gochis, D. J., W. J. Shuttleworth, and Z. L. Yang, 2002: Sensitivity of the modeled North American monsoon regional climate to convective parameterization. Mon. Wea. Rev., 130, 12821298.

    • Search Google Scholar
    • Export Citation
  • Gochis, D. J., W. J. Shuttleworth, and Z. L. Yang, 2003: Hydrometeorological response of the modeled North American monsoon to convective parameterization. J. Hydrometeor., 4, 235250.

    • Search Google Scholar
    • Export Citation
  • Gochis, D. J., A. J. Jimenez, C. J. Watts, J. Garatuza-Payan, and W. J. Shuttleworth, 2004: Analysis of 2002 and 2003 warm-season precipitation from the North American Monsoon Experiment event rain gauge network. Mon. Wea. Rev., 112, 29382953.

    • Search Google Scholar
    • Export Citation
  • Grantz, K., B. Rajagopalan, M. Clark, and E. Zagona, 2007: Seasonal shifts in the North American monsoon. J. Climate, 20, 19231935.

  • Gutzler, D. S., and Coauthors, 2005: The North American Monsoon Model Assessment Project. Bull. Amer. Meteor. Soc., 86, 14231429.

  • Hales, J. E., 1974: Southwestern United States summer monsoon source—Gulf of Mexico or Pacific Ocean? J. Appl. Meteor., 13, 331342.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., and W. Shi, 2000: Dominant factors responsible for interannual variability of the summer monsoon in the southwestern United States. J. Climate, 13, 759776.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Y. Chen, and A. V. Douglas, 1999: Interannual variability of the North American warm season precipitation regime. J. Climate, 12, 653680.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., and H. L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 23222339.

    • Search Google Scholar
    • Export Citation
  • Hu, Q., and S. Feng, 2002: Interannual rainfall variations in the North American summer monsoon region: 1900–98. J. Climate, 15, 11891202.

    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., V. J. Dagostaro, V. E. Kousky, and R. J. Joyce, 2007: An examination of precipitation in observations and model forecasts during NAME with emphasis on the diurnal cycle. J. Climate, 20, 16801692.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181.

  • Lang, T. J., D. A. Ahijevych, S. W. Nesbitt, R. E. Carbone, S. A. Rutledge, and R. Cifelli, 2007: Radar-observed characteristics of precipitating systems during NAME 2004. J. Climate, 20, 17131733.

    • Search Google Scholar
    • Export Citation
  • Liang, X. Z., M. Xu, K. E. Kunkel, G. A. Grell, and J. Kain, 2007: Regional climate model simulation of U.S.–Mexico summer precipitation using the optimal ensemble of two cumulus parameterizations. J. Climate, 20, 52015207.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., I. Blade, N. A. Bond, D. Gochis, D. Allured, and G. T. Bates, 2008: Characteristics of North American summertime rainfall with emphasis on the monsoon. J. Climate, 21, 12771294.

    • Search Google Scholar
    • Export Citation
  • Lo, F., and M. P. Clark, 2002: Relationships between spring snow mass and summer precipitation in the southwestern United States associated with the North American monsoon system. J. Climate, 15, 13781385.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360.

  • Mo, K. C., M. Chelliah, M. L. Carrera, R. W. Higgins, and W. Ebisuzaki, 2005: Atmospheric moisture transport over the United States and Mexico as evaluated in the NCEP regional reanalysis. J. Hydrometeor., 6, 710728.

    • Search Google Scholar
    • Export Citation
  • Munoz-Arriola, F., D. P. Lettenmaier, C. Zhu, and R. Avissar, 2009: Water resources sensitivity of the Rio Yaqui Basin, México to agriculture extensification under multiscale climate conditions. Water Resour. Res., 45, W00A20, doi:10.1029/2007WR006783.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., D. J. Gochis, and T. J. Lang, 2008: The diurnal cycle of clouds and precipitation along the Sierra Madre Occidental observed during NAME-2004: Implications for warm season precipitation estimation in complex terrain. J. Hydrometeor., 9, 728743.

    • Search Google Scholar
    • Export Citation
  • Ratnam, J. V., and K. K. Kumar, 2005: Sensitivity of the simulated monsoons of 1987 and 1988 to convective parameterization schemes in MM5. J. Climate, 18, 27242743.

    • Search Google Scholar
    • Export Citation
  • Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124, 10711107.

    • Search Google Scholar
    • Export Citation
  • Schmitz, J. T., and S. L. Mullen, 1996: Water vapor transport associated with the summertime North American monsoon as depicted by ECMWF analyses. J. Climate, 9, 16211634.

    • Search Google Scholar
    • Export Citation
  • Small, E. E., 2001: The influence of soil moisture anomalies on variability of the North American monsoon system. Geophys. Res. Lett., 28, 139142.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., R. L. Gall, S. L. Mullen, and K. W. Howard, 1995: Model climatology of the Mexican monsoon. J. Climate, 8, 17751794.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., R. L. Gall, and M. K. Nordquist, 1997: Surges over the Gulf of California during the Mexican monsoon. Mon. Wea. Rev., 125, 417437.

    • Search Google Scholar
    • Export Citation
  • Turrent, C., and T. Cavazos, 2009: Role of the land–sea thermal contrast in the interannual modulation of the North American monsoon. Geophys. Res. Lett., 36, L02808, doi:10.1029/2008GL036299.

    • Search Google Scholar
    • Export Citation
  • Wang, W., and N. L. Seaman, 1997: A comparison study of convective parameterization schemes in a mesoscale model. Mon. Wea. Rev., 125, 252278.

    • Search Google Scholar
    • Export Citation
  • Xu, J., and E. E. Small, 2002: Simulating summertime rainfall variability in the North American monsoon region: The influence of convection and radiation parameterizations. J. Geophys. Res., 107, 4727, doi:10.1029/2001JD002047.

    • Search Google Scholar
    • Export Citation
  • Xu, J., X. Gao, J. Shuttleworth, S. Sorooshian, and E. Small, 2004: Model climatology of the North American monsoon onset period during 1980–2001. J. Climate, 17, 38923906.

    • Search Google Scholar
    • Export Citation
  • Zhu, C., and D. P. Lettenmaier, 2007: Long-term climate and derived surface hydrology and energy flux data for Mexico: 1925–2004. J. Climate, 20, 19361946.

    • Search Google Scholar
    • Export Citation
  • Zhu, C., D. P. Lettenmaier, and T. Cavazos, 2005: Role of antecedent land surface conditions on monsoon rainfall variability. J. Climate, 18, 28242841.

    • Search Google Scholar
    • Export Citation
  • Zhu, C., T. Cavazos, and D. P. Lettenmaier, 2007: Role of antecedent land surface conditions in warm season precipitation over northwestern Mexico. J. Climate, 20, 17741791.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 84 31 1
PDF Downloads 56 23 0

A Numerical Investigation of Wet and Dry Onset Modes in the North American Monsoon Core Region. Part I: A Regional Mechanism for Interannual Variability

View More View Less
  • 1 Departmento de Oceanografía Física, Centro de Investigación Científica y Educación Superior de Ensenada, Ensenada, Baja California, Mexico
Restricted access

Abstract

In this study the results of two regional fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) simulations forced at their boundaries with low-pass-filtered North American Regional Reanalysis (NARR) composite fields from which synoptic-scale variability was removed are presented. The filtered NARR data are also assimilated into the inner domain through the use of field nudging. The purpose of this research is to investigate wet and dry onset modes in the core region of the North American monsoon (NAM). Key features of the NAM that are present in the NARR fields and assimilated into the regional simulations include the position of the midlevel anticyclone, low-level circulation over the Gulf of California, and moisture flux patterns into the core monsoon region, for which the eastern Pacific is the likely primary source of moisture. The model develops a robust diurnal cycle of deep convection over the peaks of the Sierra Madre Occidental (SMO) that results solely from its radiation scheme and internal dynamics, in spite of the field nudging. The wet onset mode is related to a regional land–sea thermal contrast (LSTC) that is ~2°C higher than in the dry mode, and is further characterized by a northward-displaced midlevel anticyclone, a stronger surface pressure gradient along the Gulf of California, larger mean moisture fluxes into the core region from the eastern Pacific, a stronger diurnal cycle of deep convection, and the more northward distribution of precipitation along the axis of the SMO. A proposed regional LSTC mechanism for NAM onset interannual variability is consistent with the differences between both onset modes.

Current affiliation: Departamento de Oceanología, Centro Interdisciplinario de Ciencias Marinas–Instituto Politécnico Nacional, La Paz, Baja California, Mexico.

Corresponding author address: Cuauhtémoc Turrent, Dept. de Oceanología, CICIMAR-IPN, Av. IPN s/n, Col. Playa Palo de Santa Rita, Código Postal 23096, La Paz, Baja California Sur, México. E-mail: cturrent@ipn.mx

Abstract

In this study the results of two regional fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) simulations forced at their boundaries with low-pass-filtered North American Regional Reanalysis (NARR) composite fields from which synoptic-scale variability was removed are presented. The filtered NARR data are also assimilated into the inner domain through the use of field nudging. The purpose of this research is to investigate wet and dry onset modes in the core region of the North American monsoon (NAM). Key features of the NAM that are present in the NARR fields and assimilated into the regional simulations include the position of the midlevel anticyclone, low-level circulation over the Gulf of California, and moisture flux patterns into the core monsoon region, for which the eastern Pacific is the likely primary source of moisture. The model develops a robust diurnal cycle of deep convection over the peaks of the Sierra Madre Occidental (SMO) that results solely from its radiation scheme and internal dynamics, in spite of the field nudging. The wet onset mode is related to a regional land–sea thermal contrast (LSTC) that is ~2°C higher than in the dry mode, and is further characterized by a northward-displaced midlevel anticyclone, a stronger surface pressure gradient along the Gulf of California, larger mean moisture fluxes into the core region from the eastern Pacific, a stronger diurnal cycle of deep convection, and the more northward distribution of precipitation along the axis of the SMO. A proposed regional LSTC mechanism for NAM onset interannual variability is consistent with the differences between both onset modes.

Current affiliation: Departamento de Oceanología, Centro Interdisciplinario de Ciencias Marinas–Instituto Politécnico Nacional, La Paz, Baja California, Mexico.

Corresponding author address: Cuauhtémoc Turrent, Dept. de Oceanología, CICIMAR-IPN, Av. IPN s/n, Col. Playa Palo de Santa Rita, Código Postal 23096, La Paz, Baja California Sur, México. E-mail: cturrent@ipn.mx
Save