• Ammann, C. M., G. A. Meehl, W. M. Washington, and C. Zender, 2003: A monthly and latitudinally varying volcanic forcing dataset in simulations of 20th century climate. Geophys. Res. Lett., 30, 1657, doi:10.1029/2003GL016875.

    • Search Google Scholar
    • Export Citation
  • Arblaster, J. M., and G. A. Meehl, 2006: Contribution of various external forcings to trends in the Southern Annular Mode. J. Climate, 19, 28962905.

    • Search Google Scholar
    • Export Citation
  • Arblaster, J. M., G. A. Meehl, and D. Karoly, 2011: Future climate change in the Southern Hemisphere: The competing effects of ozone and greenhouse gases. Geophys. Res. Lett., 38, L02701, doi:10.1029/2010GL045384.

    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., K. M. Shell, P. R. Gent, D. Bailey, G. Danabasoglu, K. C. Armour, M. M. Holland, and J. T. Kiehl, 2012: Climate sensitivity in the Community Climate System Model, version 4. J. Climate, 25, 30533070.

    • Search Google Scholar
    • Export Citation
  • Brohan, P., J. J. Kennedy, I. Harris, S. F. B. Tett, and P. D. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: A new dataset from 1850. J. Geophys. Res., 111, D12106, doi:10.1029/2005JD006548.

    • Search Google Scholar
    • Export Citation
  • Bryan, F. O., and Coauthors, 2006: Response of the North Atlantic thermohaline circulation and ventilation to increasing carbon dioxide in CCSM3. J. Climate, 19, 23822397.

    • Search Google Scholar
    • Export Citation
  • Bryden, L. H., H. R. Longworth, and S. A. Cunningham, 2005: Slowing of the Atlantic meridional overturning circulation at 25°N. Nature, 438, 655657, doi:10.1038/nature04385.

    • Search Google Scholar
    • Export Citation
  • Cavalieri, D. J., C. L. Parkinson, P. Gloersen, J. C. Comiso, and H. J. Zwally, 1999: Deriving long-term time series of sea ice cover from satellite passive-microwave multisensor data sets. J. Geophys. Res., 104 (C7), 15 80315 814.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., P. J. Rasch, B. E. Eaton, D. W. Fillmore, J. T. Kiehl, T. C. Beck, and C. S. Zender, 2002: Simulation of aerosol distributions and radiative forcing for INDOEX: Regional climate impacts. J. Geophys. Res., 107, 8028, doi:10.1029/2000JD000032.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model, version 3 (CCSM3). J. Climate, 19, 21222143.

  • Cunningham, S. A., and Coauthors, 2007: Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science, 317, 935937.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and Coauthors, 2012: ENSO and Pacific decadal variability in Community Climate System Model Version 4. J. Climate, 25, 2622–2651.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2010: Sensitivity of 21st century stratospheric ozone to greenhouse gas scenarios. Geophys. Res. Lett., 37, L16807, doi:10.1029/2010GL044443.

    • Search Google Scholar
    • Export Citation
  • Forster, P., and Coauthors, 2007: Changes in atmospheric constituents and in radiative forcing. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 129–234.

  • Ganachaud, A., and C. Wunsch, 2000: Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408, 453457.

    • Search Google Scholar
    • Export Citation
  • Gent, P., and Coauthors, 2011: The Community Climate System Model, version 4. J. Climate, 24, 49734991.

  • Hegerl, G. C., and Coauthors, 2007: Understanding and attributing climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 663–745.

  • Jahn, A., and Coauthors, 2012: Late-twentieth-century simulation of Arctic sea ice and ocean properties in the CCSM4. J. Climate, 25, 14311452.

    • Search Google Scholar
    • Export Citation
  • Kanzow, T., and Coauthors, 2007: Observed flow compensation associated with the MOC at 26.5°N in the Atlantic. Science, 317, 937941.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., M. M. Holland, C. Bitz, A. Gettelman, E. Blanchard-Wrigglesworth, and A. Conley, and D. Bailey, 2012: The influence of local feedbacks and northward heat transport on the equilibrium Arctic climate response to increased greenhouse gas forcing. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., and L. Tomassini, 2008: Constraints on the transient climate response from observed global temperature and ocean heat uptake. Geophys. Res. Lett., 35, L09701, doi:10.1029/2007GL032904.

    • Search Google Scholar
    • Export Citation
  • Lamarque, J.-F., and Coauthors, 2010: Historical (1850-2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmos. Chem. Phys., 10, 70177039, doi:10.5194/acp-10-7017-2010.

    • Search Google Scholar
    • Export Citation
  • Lamarque, J.-F., G. P. Kyle, M. Meinshausen, K. Riahi, S. J. Smith, D. P. van Vuuren, A. Conley, and F. Vitt, 2011: Global and regional evolution of short-lived radiatively-active gases and aerosols in the Representative Concentration Pathways. Climatic Change, 109, 191212, doi:10.1007/s10584-011-0155-0.

    • Search Google Scholar
    • Export Citation
  • Landrum, L., M. M. Holland, D. P. Schneider, and E. Hunke, 2012: Antarctic sea ice climatology, variability and late twentieth-century change in CCSM4. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Lawrence, P. J., and Coauthors, 2012: Simulating the biogeochemical and biogeophysical impacts of transient land cover change and wood harvest in the Community Climate System Model (CCSM4) from 1850 to 2100. J. Climate, 25, 30713095.

    • Search Google Scholar
    • Export Citation
  • Lean, J., 2000: Evolution of the sun’s spectral irradiance since the maunder minimum. Geophys. Res. Lett., 27, 24252428.

  • Levitus, S., J. I. Antonov, T. P. Boyer, R. A. Locarnini, H. E. Garcia, and A. V. Mishonov, 2009: Global ocean heat content 1955-2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett., 36, L07608, doi:10.1029/2008GL037155.

    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37, 25502562.

  • Meehl, G. A., and C. Tebaldi, 2004: More intense, more frequent and longer lasting heat waves in the 21st century. Science, 305, 994997.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., W. M. Washington, C. Amman, J. M. Arblaster, T. M. L. Wigley, and C. Tebaldi, 2004: Combinations of natural and anthropogenic forcings and twentieth century climate. J. Climate, 17, 37213727.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., W. M. Washington, W. D. Collins, J. M. Arblaster, A. Hu, L. E. Buja, W. G. Strand, and H. Teng, 2005: How much more global warming and sea level rise? Science, 307, 17691772.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2006: Climate change projections for twenty-first century and climate change commitment in the CCSM3. J. Climate, 19, 25972616.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–845.

  • Meehl, G. A., J. M. Arblaster, and W. D. Collins, 2008: Effects of black carbon aerosols on the Indian monsoon. J. Climate, 21, 28692882.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2012: Relative outcomes of climate change mitigation related to temperature versus sea level rise. Nat. Climate Change, in press.

    • Search Google Scholar
    • Export Citation
  • Meinshausen M., N. Meinshausen, W. Hare, S. C. B. Raper, K. Frieler, R. Knutti, D. J. Frame, and M. R. Allen, 2009: Greenhouse emission targets for limiting global warming to 2°C. Nature, 458, 11581163.

    • Search Google Scholar
    • Export Citation
  • Moss, R., and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747756, doi:10.1038/nature08823.

    • Search Google Scholar
    • Export Citation
  • Murphy, D. M., and Coauthors, 2009: An observationally based energy balance for the Earth since 1950. J. Geophys. Res., 114, D17107, doi:10.1029/2009JD012105.

    • Search Google Scholar
    • Export Citation
  • Peacock, S., 2012: Projected twenty-first century changes in temperature, precipitation and snow cover over North America in CCSM4. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Stott, P. A., and C. E. Forest, 2007: Ensemble climate predictions using climate models and observational constraints. Philos. Trans. Roy. Soc., A365, 20292052.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, cited 2009: A summary of the CMIP5 experimental design. [Available online at http://www-pcmdi.llnl.gov/.]

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498.

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., J. M. Arblaster, K. Hayhoe, and G. A. Meehl, 2006: Going to the extremes: An intercomparison of model-simulated historical and future changes in extreme events. Climatic Change, 79, 185211, doi:10.1007/s10584-006-9051-4.

    • Search Google Scholar
    • Export Citation
  • Teng, H., W. M. Washington, G. Branstator, G. A. Meehl and J.-F. Lamarque, 2012: Potential impacts of Asian carbon aerosols on future U.S. warming. Geophys. Res. Lett., in press.

  • Trenberth, K., J. Berry and L. Buja, 1993: Vertical interpolation and truncation of model-coordinate data. NCAR Tech. Rep. NCAR/TN-396, 54 pp.

  • van Vuuren, D. P., and Coauthors, 2011: The representative concentration pathways: An overview. Climatic Change, 109, 531, doi:10.1007/s10584-011-0148-z.

    • Search Google Scholar
    • Export Citation
  • Vavrus, S., and Coauthors, 2012: Twenty-first-century Arctic climate change in CCSM4. J. Climate, 25, 2696–2710.

  • Wang, Y.-M., J. L. Lean, and N. R. Sheeley Jr., 2005: Modeling the Sun’s magnetic field and irradiance since 1713. Astrophys. J., 625, 522538.

    • Search Google Scholar
    • Export Citation
  • Washington, W. M., and Coauthors, 2000: Parallel climate model (PCM) control and transient simulations. Climate Dyn., 16, 755774.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1507 974 82
PDF Downloads 998 602 41

Climate System Response to External Forcings and Climate Change Projections in CCSM4

View More View Less
  • 1 National Center for Atmospheric Research,* Boulder, Colorado
  • | 2 National Center for Atmospheric Research,* Boulder, Colorado, and CAWCR, Bureau of Meteorology, Melbourne, Victoria, Australia
  • | 3 National Center for Atmospheric Research,* Boulder, Colorado
  • | 4 Climate Central, Princeton, New Jersey
  • | 5 National Center for Atmospheric Research,* Boulder, Colorado
Restricted access

Abstract

Results are presented from experiments performed with the Community Climate System Model, version 4 (CCSM4) for the Coupled Model Intercomparison Project phase 5 (CMIP5). These include multiple ensemble members of twentieth-century climate with anthropogenic and natural forcings as well as single-forcing runs, sensitivity experiments with sulfate aerosol forcing, twenty-first-century representative concentration pathway (RCP) mitigation scenarios, and extensions for those scenarios beyond 2100–2300. Equilibrium climate sensitivity of CCSM4 is 3.20°C, and the transient climate response is 1.73°C. Global surface temperatures averaged for the last 20 years of the twenty-first century compared to the 1986–2005 reference period for six-member ensembles from CCSM4 are +0.85°, +1.64°, +2.09°, and +3.53°C for RCP2.6, RCP4.5, RCP6.0, and RCP8.5, respectively. The ocean meridional overturning circulation (MOC) in the Atlantic, which weakens during the twentieth century in the model, nearly recovers to early twentieth-century values in RCP2.6, partially recovers in RCP4.5 and RCP6, and does not recover by 2100 in RCP8.5. Heat wave intensity is projected to increase almost everywhere in CCSM4 in a future warmer climate, with the magnitude of the increase proportional to the forcing. Precipitation intensity is also projected to increase, with dry days increasing in most subtropical areas. For future climate, there is almost no summer sea ice left in the Arctic in the high RCP8.5 scenario by 2100, but in the low RCP2.6 scenario there is substantial sea ice remaining in summer at the end of the century.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: G. Meehl, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: meehl@ucar.edu

This article is included in the CCSM4 Special Collection.

Abstract

Results are presented from experiments performed with the Community Climate System Model, version 4 (CCSM4) for the Coupled Model Intercomparison Project phase 5 (CMIP5). These include multiple ensemble members of twentieth-century climate with anthropogenic and natural forcings as well as single-forcing runs, sensitivity experiments with sulfate aerosol forcing, twenty-first-century representative concentration pathway (RCP) mitigation scenarios, and extensions for those scenarios beyond 2100–2300. Equilibrium climate sensitivity of CCSM4 is 3.20°C, and the transient climate response is 1.73°C. Global surface temperatures averaged for the last 20 years of the twenty-first century compared to the 1986–2005 reference period for six-member ensembles from CCSM4 are +0.85°, +1.64°, +2.09°, and +3.53°C for RCP2.6, RCP4.5, RCP6.0, and RCP8.5, respectively. The ocean meridional overturning circulation (MOC) in the Atlantic, which weakens during the twentieth century in the model, nearly recovers to early twentieth-century values in RCP2.6, partially recovers in RCP4.5 and RCP6, and does not recover by 2100 in RCP8.5. Heat wave intensity is projected to increase almost everywhere in CCSM4 in a future warmer climate, with the magnitude of the increase proportional to the forcing. Precipitation intensity is also projected to increase, with dry days increasing in most subtropical areas. For future climate, there is almost no summer sea ice left in the Arctic in the high RCP8.5 scenario by 2100, but in the low RCP2.6 scenario there is substantial sea ice remaining in summer at the end of the century.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: G. Meehl, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: meehl@ucar.edu

This article is included in the CCSM4 Special Collection.

Save