• Avissar, R., and D. Werth, 2005: Global hydroclimatological teleconnections resulting from tropical deforestation. J. Hydrometeor., 6, 134145.

    • Search Google Scholar
    • Export Citation
  • Barros, V. R., A. M. Grimm, and M. E. Doyle, 2002: Relationship between temperature and circulation in southeastern South America and its influence from El Niño and La Niña events. J. Meteor. Soc. Japan, 80, 2132.

    • Search Google Scholar
    • Export Citation
  • Bell, J. L., L. C. Sloan, and M. A. Snyder, 2004: Regional changes in extreme climatic events: A future climate scenario. J. Climate, 17, 8187.

    • Search Google Scholar
    • Export Citation
  • Caesar, J., L. Alexander, and R. Vose, 2006: Large-scale changes in observed daily maximum and minimum temperatures: Creation and analysis of a new gridded data set. J. Geophys. Res., 111, D05101, doi:10.1029/2005JD006280.

    • Search Google Scholar
    • Export Citation
  • Costa, M. H., and J. A. Foley, 2000: Combined effects of deforestation and doubled atmospheric CO2 concentrations on the climate of Amazonia. J. Climate, 13, 1834.

    • Search Google Scholar
    • Export Citation
  • Costa, M. H., S. N. M. Yanagi, P. J. O. P. Souza, A. Ribeiro, and E. J. P. Rocha, 2007: Climate change in Amazonia caused by soybean cropland expansion, as compared to caused by pastureland expansion. Geophys. Res. Lett., 34, L07706, doi:10.1029/2007GL029271.

    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N. S., J. S. Pal, R. J. Trapp, and F. Giorgi, 2005: Fine-scale processes regulate the response of extreme events to global climate change. Proc. Natl. Acad. Sci. USA, 102, 15 77415 778.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., T. R. Knutson, and P. C. D. Milly, 2006: Weak simulated extratropical responses to complete tropical deforestation. J. Climate, 19, 28352850.

    • Search Google Scholar
    • Export Citation
  • Gandu, A. W., J. C. P. Cohen, and J. R. S. Souza, 2004: Simulation of deforestation in eastern Amazonia using a high-resolution model. Theor. Appl. Climatol., 78, 123135.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., 1999: Cold air incursions over subtropical and tropical South America: A numerical case study. Mon. Wea. Rev., 127, 28232853.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., 2000: Cold air incursions over subtropical South America: Mean structure and dynamics. Mon. Wea. Rev., 128, 25442559.

    • Search Google Scholar
    • Export Citation
  • Gash, J. H. C., and C. A. Nobre, 1997: Climatic effects of Amazonian deforestation: Some results from ABRACOS. Bull. Amer. Meteor. Soc., 78, 823830.

    • Search Google Scholar
    • Export Citation
  • Gedney, N., and P. J. Valdes, 2000: The effect of Amazonian deforestation on the Northern Hemisphere circulation and climate. Geophys. Res. Lett., 27, 30533056.

    • Search Google Scholar
    • Export Citation
  • Hahmann, A. N., and R. E. Dickinson, 1997: RCCM2-BATS model over tropical South America: Applications to tropical deforestation. J. Climate, 10, 19441964.

    • Search Google Scholar
    • Export Citation
  • Hall, N. M. J., B. J. Hoskins, P. J. Valdes, and C. A. Senior, 1994: Storm tracks in a high-resolution GCM with doubled carbon dioxide. Quart. J. Roy. Meteor. Soc., 120, 12091230.

    • Search Google Scholar
    • Export Citation
  • Hasler, N., D. Werth, and R. Avissar, 2009: Effects of tropical deforestation on global hydroclimate: A multimodel ensemble analysis. J. Climate, 22, 11241141.

    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, A., R. E. Dickinson, T. B. Durbidge, P. J. Kennedy, K. McGuffie, and A. J. Pitman, 1993: Tropical deforestation—Modeling local-scale to regional-scale climate change. J. Geophys. Res., 98 (D4), 72897315.

    • Search Google Scholar
    • Export Citation
  • Hollander, M., and D. A. Wolfe, 1999: Nonparametric Statistical Methods. John Wiley and Sons, 787 pp.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., X.-Z. Liang, and J. Zhu, 2010: Regional climate model projections and uncertainties of U.S. summer heat waves. J. Climate, 23, 44474458.

    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., I. M. Held, and T. L. Delworth, 2001: Southern Hemisphere atmospheric circulation response to global warming. J. Climate, 14, 22382249.

    • Search Google Scholar
    • Export Citation
  • Kwiatkowski, D., P. C. B. Phillips, P. Schmidt, and Y. Shin, 1992: Testing the null hypothesis of stationarity against the alternative of unit root. J. Econom., 54, 159178.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and C.-P. Chang, 1987: Planetary scale aspects of the winter monsoon and atmospheric teleconnections. Monsoon Meteorology, C.-P. Change and T. N. Krishnamurti, Eds., Oxford University Press, 161–202.

  • Lean, J., and P. R. Rowntree, 1993: A GCM simulation of the impact of Amazonian deforestation on climate using an improved canopy representation. Quart. J. Roy. Meteor. Soc., 119, 509530.

    • Search Google Scholar
    • Export Citation
  • Ljung, G. M., and G. E. P. Box, 1978: On a measure of lack of fit in time series models. Biometrika, 65, 297303.

  • Lloyd, I. D., and G. A. Vecchi, 2010: Submonthly Indian Ocean cooling events and their interaction with large-scale conditions. J. Climate, 23, 700716.

    • Search Google Scholar
    • Export Citation
  • Marengo, J., A. Cornejo, P. Satyamurty, and C. Nobre, 1997a: Cold surges in tropical and extratropical South America: The strong event in June 1994. Mon. Wea. Rev., 125, 27592786.

    • Search Google Scholar
    • Export Citation
  • Marengo, J., C. Nobre, and A. Culf, 1997b: Climatic impacts of “friagens” in forested and deforested regions in the Amazon Basin. J. Appl. Meteor., 36, 15531566.

    • Search Google Scholar
    • Export Citation
  • Medvigy, D., R. L. Walko, and R. Avissar, 2008: Modeling interannual variability of the Amazon hydroclimate. Geophys. Res. Lett., 35, L15817, doi:10.1029/2008GL034941.

    • Search Google Scholar
    • Export Citation
  • Medvigy, D., R. W. Walko, M. J. Otte, and R. Avissar, 2010: The Ocean–Land–Atmosphere Model (OLAM): Optimization and evaluation of simulated radiative fluxes and precipitation. Mon. Wea. Rev., 138, 19231939.

    • Search Google Scholar
    • Export Citation
  • Medvigy, D., R. L. Walko, and R. Avissar, 2011: Effects of deforestation on spatiotemporal distributions of precipitation in South America. J. Climate, 24, 21472163.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–845.

  • Müller, G. V., 2010: Temperature decrease in the extratropics of South America in response to a tropical forcing during the austral winter. Ann. Geophys., 28, 19.

    • Search Google Scholar
    • Export Citation
  • Müller, G. V., and G. J. Berri, 2007: Atmospheric circulation associated with persistent generalized frosts in central-southern South America. Mon. Wea. Rev., 135, 12681289.

    • Search Google Scholar
    • Export Citation
  • Müller, G. V., T. Ambrizzi, and M. N. Núñez, 2005: Mean atmospheric circulation leading to generalized frosts in central southern South America. Theor. Appl. Climatol., 82, 95112.

    • Search Google Scholar
    • Export Citation
  • Olson, J. S., 1994a: Global ecosystem framework-definitions. USGS EROS Data Center Internal Rep., 37 pp.

  • Olson, J. S., 1994b: Global ecosystem framework-translation strategy. USGS EROS Data Center Internal Rep., 39 pp.

  • Ramos da Silva, R., D. Werth, and R. Avissar, 2008: Regional impacts of future land cover changes on the Amazon basin wet-season climate. J. Climate, 21, 11531170.

    • Search Google Scholar
    • Export Citation
  • R Development Core Team, cited 2008: R: A language and environment for statistical computing. R Foundation for Statistical Computing. [Available online at http://www.R-project.org.]

  • Reynolds, R. W., N. A. Rayner, T. M. Smith, T. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625.

    • Search Google Scholar
    • Export Citation
  • Rind, D., M. Chandler, J. Lerner, D. G. Martinson, and X. Yuan, 2001: Climate response to basin-specific changes in latitudinal temperature gradients and implications for sea ice variability. J. Geophys. Res., 106 (D17), 20 16120 173.

    • Search Google Scholar
    • Export Citation
  • Royston, P., 1982: An extension of Shapiro and Wilk’s W test for normality to large samples. Appl. Stat., 31, 115124.

  • Sampaio, G., C. Nobre, M. H. Costa, P. Satyamurty, B. S. Soares-Filho, and M. Cardoso, 2007: Regional climate change over eastern Amazonia caused by pasture and soybean cropland expansion. Geophys. Res. Lett., 34, L17709, doi:10.1029/2007GL030612.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., W. E. Bracken, and L. F. Bosart, 1998: Planetary- and synoptic-scale signatures associated with Central American cold surges. Mon. Wea. Rev., 126, 527.

    • Search Google Scholar
    • Export Citation
  • Soares-Filho, B. S., and Coauthors, 2006: Modelling conservation in the Amazon basin. Nature, 440, 520523.

  • Uccellini, L. W., and D. R. Johnson, 1979: The coupling of upper- and lower-tropospheric jet streaks and implications for the development of severe convective storms. Mon. Wea. Rev., 107, 682703.

    • Search Google Scholar
    • Export Citation
  • Walko, R. L., and R. Avissar, 2008a: The Ocean–Land–Atmosphere Model (OLAM): Shallow water tests. Mon. Wea. Rev., 136, 40334044.

  • Walko, R. L., and R. Avissar, 2008b: The Ocean–Land–Atmosphere Model (OLAM): Formulation and tests of the nonhydrostatic dynamic core. Mon. Wea. Rev., 136, 40454062.

    • Search Google Scholar
    • Export Citation
  • Walko, R. L., and R. Avissar, 2011: A direct method for constructing refined regions in unstructured conforming triangular–hexagonal computational grids: Application to OLAM. Mon. Wea. Rev., 139, 39233937.

    • Search Google Scholar
    • Export Citation
  • Walko, R. L., and Coauthors, 2000: Coupled atmosphere–biophysics–hydrology models for environmental modeling. J. Appl. Meteor., 39, 931944.

    • Search Google Scholar
    • Export Citation
  • Werth, D., and R. Avissar, 2002: The local and global effects of Amazon deforestation. J. Geophys. Res., 107, 8087, doi:10.1029/2001JD000717.

    • Search Google Scholar
    • Export Citation
  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701, doi:10.1029/2005GL023684.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 261 111 4
PDF Downloads 114 68 2

Simulated Links between Deforestation and Extreme Cold Events in South America

View More View Less
  • 1 Department of Geosciences, and Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey
  • | 2 Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
Restricted access

Abstract

Many modeling studies have indicated that deforestation will increase the average annual temperature in the Amazon. However, few studies have investigated the potential for deforestation to change the frequency and intensity of extreme events. This problem is addressed here using a variable-resolution GCM. The characteristic length scale (CLS) of the model’s grid mesh over South America is 25 km, comparable to that used by limited-area models. For computational efficiency, the CLS increases to 200 km over the rest of the world. It is found that deforestation induces large changes in the frequency of wintertime extreme cold events. Large increases in cold event frequency and intensity occur in the western Amazon and, surprisingly, in parts of southern South America, far from the actual deforested area. One possible mechanism for these remote effects involves changes in the position of the subtropical jet, caused by temperature changes in the Amazon. Increased understanding of these potential changes in extreme events will be important for local agriculture, natural ecosystems, and the human population.

Corresponding author address: David Medvigy, Princeton University, Department of Geosciences, 418B-Guyot Hall, Princeton, NJ 08544. E-mail: dmedvigy@princeton.edu

Abstract

Many modeling studies have indicated that deforestation will increase the average annual temperature in the Amazon. However, few studies have investigated the potential for deforestation to change the frequency and intensity of extreme events. This problem is addressed here using a variable-resolution GCM. The characteristic length scale (CLS) of the model’s grid mesh over South America is 25 km, comparable to that used by limited-area models. For computational efficiency, the CLS increases to 200 km over the rest of the world. It is found that deforestation induces large changes in the frequency of wintertime extreme cold events. Large increases in cold event frequency and intensity occur in the western Amazon and, surprisingly, in parts of southern South America, far from the actual deforested area. One possible mechanism for these remote effects involves changes in the position of the subtropical jet, caused by temperature changes in the Amazon. Increased understanding of these potential changes in extreme events will be important for local agriculture, natural ecosystems, and the human population.

Corresponding author address: David Medvigy, Princeton University, Department of Geosciences, 418B-Guyot Hall, Princeton, NJ 08544. E-mail: dmedvigy@princeton.edu
Save