• Behera, S., and T. Yamagata, 2010: Imprint of the El Niño Modoki on decadal sea level changes. Geophys. Res. Lett., 37, L23702, doi:10.1029/2010GL045936.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017.

    • Search Google Scholar
    • Export Citation
  • Chang, P., L. Ji, and H. Li, 1997: A decadal climate variation in the tropical Atlantic from thermodynamics air-sea interactions. Nature, 385, 516518.

    • Search Google Scholar
    • Export Citation
  • Chen, A. A., and M. A. Taylor, 2002: Investigating the link between early season Caribbean rainfall and the El Niño + 1 year. Int. J. Climatol., 22, 87106, doi:10.1002/joc.711.

    • Search Google Scholar
    • Export Citation
  • Curtis, S., and D. W. Gamble, 2008: Regional variations of the Caribbean mid-summer drought. Theor. Appl. Climatol., 94, 2534, doi:10.1007/s00704-007-0342-0.

    • Search Google Scholar
    • Export Citation
  • Ebisuzaki, W., 1997: A method to estimate the statistical significance of a correlation when the data are serially correlated. J. Climate, 10, 21472153.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., and E. J. Alfaro, 1999: The dependence of Caribbean rainfall on the interaction of the tropical Atlantic and Pacific Oceans. J. Climate, 12, 20932103.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., and L. Cid-Serrano, 2010: Secular and multidecadal warnings in the North Atlantic and their relationships with major hurricane activity. Int. J. Climatol., 30, 174184 doi:10.1002/joc.1881.

    • Search Google Scholar
    • Export Citation
  • Gamble, D. W., and S. Curtis, 2008: Caribbean precipitation: Review, model and prospect. Prog. Phys. Geogr., 32, 265276.

  • Giannini, A., Y. Kushnir, and M. A. Cane, 2000: Interannual variability of Caribbean rainfall, ENSO, and the Atlantic Ocean. J. Climate, 13, 297311.

    • Search Google Scholar
    • Export Citation
  • Giannini, A., J. C. H. Chiang, M. A. Cane, Y. Kushnir, and R. Seager, 2001: The ENSO teleconnection to the tropical Atlantic Ocean: Contribution of the remote and local SSTs to rainfall variability in the tropical Americas. J. Climate, 14, 45304544.

    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., C. W. Landsea, A. M. Maestas-Nuñez, and W. M. Gray, 2001: The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293, 474479.

    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., A. Kumar, B. Huang, Y. Xue, W. Wang, and B. Jha, 2011: Persistent atmospheric and oceanic anomalies in the North Atlantic from summer 2009 to summer 2010. J. Climate, 24, 58125830.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269, 676679.

    • Search Google Scholar
    • Export Citation
  • Jury, M. R., and I. Gouirand, 2011: Decadal climate variability of the eastern Caribbean. J. Geophys. Res., 116, D00Q03, doi:10.1029/2010JD015107.

    • Search Google Scholar
    • Export Citation
  • Jury, M. R., and E. Rodriguez, 2011: Caribbean hurricanes: Interannual variability and prediction. Theor. Appl. Climatol., 106, 105115, doi:10.1007/s00704-011-0422-z.

    • Search Google Scholar
    • Export Citation
  • Kalnay E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Latif, M., 2001: Tropical Pacific/Atlantic Ocean interactions at multi-decadal time scales. Geophys. Res. Lett., 28, 539542.

  • Martin, E. R., and C. Schumacher, 2011: Modulation of Caribbean precipitation by the Madden–Julian oscillation. J. Climate, 24, 813824.

    • Search Google Scholar
    • Export Citation
  • Min, S.-K., S. Legutke, A. Hense, and W.-T. Kwon, 2005: Internal variability in a 1000-yr control simulation with the coupled climate model ECHO-G. II: El Niño Southern Oscillation and North Atlantic Oscillation. Tellus, 57A, 622640.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., and P. D. Jones, 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25, 693712, doi:10.1002/joc.1181.

    • Search Google Scholar
    • Export Citation
  • Moron, V., and I. Gouirand, 2003: Seasonal modulation of the El Niño–Southern Oscillation relationship with sea level pressure anomalies over the North Atlantic in October–March 1873–1996. Int. J. Climatol., 23, 143155.

    • Search Google Scholar
    • Export Citation
  • Rajagopalan, B., Y. Kushnir, and Y. M. Tourre, 1998: Observed decadal midlatitude and tropical Atlantic climate variability. Geophys. Res. Lett., 25, 39673970.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 16061626.

    • Search Google Scholar
    • Export Citation
  • Servain, J., I. Wainer, J. P. McCreary, and A. Dessier, 1999: Relationship between the equatorial and meridional modes of climatic variability in the tropical Atlantic. Geophys. Res. Lett., 26, 485488.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., 1987: Month-to-month variability of the Atlantic tropical circulation and its relationship to tropical storm formation. Mon. Wea. Rev., 115, 25982614.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and S. B. Goldenberg, 1998: Atlantic sea surface temperature and tropical cyclone formation. J. Climate, 11, 578590.

  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296.

    • Search Google Scholar
    • Export Citation
  • Spence, J. M., M. Taylor, and A. Chen, 2004: The effect of concurrent sea surface temperature anomalies in the tropical Pacific and Atlantic on Caribbean rainfall. Int. J. Climatol., 24, 15311541.

    • Search Google Scholar
    • Export Citation
  • Taylor, M. A., D. B. Enfield, and A. A. Chen, 2002: Influence of the tropical Atlantic versus the tropical Pacific on Caribbean rainfall. J. Geophys. Res., 107, 3127, doi:10.1029/2001JC001097.

    • Search Google Scholar
    • Export Citation
  • Tootle, G. A., T. C. Piechota, and F. Gutierrez, 2008: The relationships between Pacific and Atlantic Ocean sea surface temperatures and Colombian streamflow variability. J. Hydrol., 349, 268276.

    • Search Google Scholar
    • Export Citation
  • Torrence, C., and G. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 6178.

  • Wang, X., D. Wang, and W. Zhou, 2009: Decadal variability of the twentieth-century El Niño and La Niña occurrence from observations and IPCC AR4 coupled models. Geophys. Res. Lett., 36, L11701, doi:10.1029/2009GL037929.

    • Search Google Scholar
    • Export Citation
  • Xie, L., T. Yan, and L. Pietrafesa, 2005: The effect of Atlantic sea surface temperature dipole mode on hurricanes: Implications for the 2004 Atlantic hurricane season. Geophys. Res. Lett., 32, L03701, doi:10.1029/2004gl021702.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and S. G. H. Philander, 1994: A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus, 46A, 340350.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and J. A. Carton, 2004: Tropical Atlantic variability: Patterns, mechanisms, and impacts. Earth’s Climate: The Ocean-Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 121–142.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 244 141 1
PDF Downloads 175 110 0

An Analysis of Low- and High-Frequency Summer Climate Variability around the Caribbean Antilles

View More View Less
  • 1 Faculty of Pure and Applied Sciences, University of the West Indies, Cave Hill, Barbados
  • | 2 Department of Physics, University of Puerto Rico, Mayaguez, Puerto Rico, and University of Zululand, KwaDlangezwa, South Africa
  • | 3 Faculty of Pure and Applied Sciences, University of the West Indies, Cave Hill, Barbados
Restricted access

Abstract

This study contrasts the pattern of low-frequency (LF) and high-frequency (HF) climate variability in the eastern Caribbean. A low-pass Butterworth filter is used to study oscillations in rainfall and regional SST on time scales of greater and less than 8 yr in the period 1901–2002. The results show that the southern and northern Antilles are dominated by HF variability, whereas rainfall fluctuations in the eastern Antilles oscillate at quasi-decadal periods over the 102-yr record. In the southern Antilles, the HF rainfall signal derives from a late-summer response to the ENSO phase: warm and dry versus cool and wet. In the northern Antilles, the HF signal relates to a combination of an ENSO and North Atlantic Oscillation (NAO) phase: a warm ENSO and a negative NAO bring wetter conditions, while a cool ENSO and a positive NAO bring drier conditions. The early rainfall LF signal in SST is characterized by a dipole between the North Atlantic and South Atlantic and is associated with cross-equatorial winds that promote convection in the Caribbean. The study analyzes the upper-ocean structure—in particular, a low (high) salinity signal in the tropical North Atlantic (North Pacific) that relates to LF (HF) climate variability.

Corresponding author address: Isabelle Gouirand, Faculty of Pure and Applied Sciences, University of the West Indies, P.O. Box 64, Bridgetown BB11000, Barbados. E-mail: isabelle.gouirand@cavehill.uwi.edu

Abstract

This study contrasts the pattern of low-frequency (LF) and high-frequency (HF) climate variability in the eastern Caribbean. A low-pass Butterworth filter is used to study oscillations in rainfall and regional SST on time scales of greater and less than 8 yr in the period 1901–2002. The results show that the southern and northern Antilles are dominated by HF variability, whereas rainfall fluctuations in the eastern Antilles oscillate at quasi-decadal periods over the 102-yr record. In the southern Antilles, the HF rainfall signal derives from a late-summer response to the ENSO phase: warm and dry versus cool and wet. In the northern Antilles, the HF signal relates to a combination of an ENSO and North Atlantic Oscillation (NAO) phase: a warm ENSO and a negative NAO bring wetter conditions, while a cool ENSO and a positive NAO bring drier conditions. The early rainfall LF signal in SST is characterized by a dipole between the North Atlantic and South Atlantic and is associated with cross-equatorial winds that promote convection in the Caribbean. The study analyzes the upper-ocean structure—in particular, a low (high) salinity signal in the tropical North Atlantic (North Pacific) that relates to LF (HF) climate variability.

Corresponding author address: Isabelle Gouirand, Faculty of Pure and Applied Sciences, University of the West Indies, P.O. Box 64, Bridgetown BB11000, Barbados. E-mail: isabelle.gouirand@cavehill.uwi.edu
Save