• Caya, D., and R. Laprise, 1999: A semi-implicit semi-Lagrangian regional climate model: The Canadian RCM. Mon. Wea. Rev., 127, 341362.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., E. Kjellström, F. Giorgi, G. Lenderink, and M. Rummukainen, 2010: Weight assignment in regional climate models. Climate Res., 44, 179194.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., R. M. Errico, F. Giorgi, and G. T. Bates, 1989: A regional climate model for the western United States. Climatic Change, 15, 383422.

    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N. S., 2009: Influence of modern land cover on the climate of the United States. Climate Dyn., 33, 945958.

  • GFDL GAMDT, 2004: The new GFDL global atmosphere and land model AM2–LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 46414673.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., M. R. Marinucci, and G. T. Bates, 1993a: Development of a second-generation Regional Climate Model (RegCM2). Part I: Boundary-layer and radiative transfer processes. Mon. Wea. Rev., 121, 27942813.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., M. R. Marinucci, G. de Canio, and G. T. Bates, 1993b: Development of a second-generation Regional Climate Model (RegCM2). Part II: Convective processes and assimilation of lateral boundary conditions. Mon. Wea. Rev., 121, 28142832.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., X. Bi, and J. S. Pal, 2004: Mean, interannual variability and trends in a regional climate change experiment over Europe. I. Present-day climate (1961-1990). Climate Dyn., 22, 733756.

    • Search Google Scholar
    • Export Citation
  • Grell, G., J. Dudhia, and D. R. Stauffer, 1993: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+1A, 107 pp.

  • Hurrell, J. W., Y. Kushnir, G. Ottersen, and M. Visbeck, 2003: An overview of the North Atlantic Oscillation. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 1–35.

  • Jones, R. G., D. C. Hassell, D. Hudson, S. S. Wilson, G. J. Jenkins, and J. F. B. Mitchell, 2003: Workbook on generating high resolution climate change scenarios using PRECIS. UNDP, 32 pp.

  • Juang, H.-M., S.-Y. Hong, and M. Kanamitsu, 1997: The NCEP regional spectral model: An update. Bull. Amer. Meteor. Soc., 78, 21252143.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Lorenz, P., and D. Jacob, 2010: Validation of temperature trends in the ENSEMBLES regional climate model runs driven by ERA40. Climate Res., 44, 167177.

    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., W. J. Gutowski, R. Jones, R. Leung, S. McGinnis, A. M. B. Nunes, and Y. Qian, 2009: A regional climate change assessment program for North America. Eos, Trans. Amer. Geophys. Union, 90, 311, doi:10.1029/2009EO360002.

    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., and Coauthors, 2012: The North American Regional Climate Change Assessment Program: Overview of phase I results. Bull. Amer. Meteor. Soc., in press.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., and P. D. Jones, 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25, 693712.

    • Search Google Scholar
    • Export Citation
  • Pal, J. S., and Coauthors, 2007: Regional climate modeling for the developing world: The ICTP RegCM3 and RegCNET. Bull. Amer. Meteor. Soc., 88, 13951409.

    • Search Google Scholar
    • Export Citation
  • Pan, Z., 2011: Dynamic and soil moisture feedbacks in regional climate change over the central U.S. Proc. 25th Conf. on Hydrology, Seattle, WA, Amer. Meteor. Soc., J11.3. [Available online at http://ams.confex.com/ams/91Annual/webprogram/Paper185712.html.]

  • Pan, Z., R. W. Arritt, E. S. Takle, W. J. Gutowski Jr., C. J. Anderson, and M. Segal, 2004: Altered hydrologic feedback in a warming climate introduces a “warming hole.” Geophys. Res. Lett., 31, L17109, doi:10.1029/2004GL020528.

    • Search Google Scholar
    • Export Citation
  • Portmann, R. W., S. Solomon, and G. C. Hegerl, 2009: Spatial and seasonal patterns in climate change, temperatures, and precipitation across the United States. Proc. Natl. Acad. Sci. USA, 106, 73247329.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp.

  • Tebaldi, C., and R. Knutti, 2007: The use of the multi-model ensemble in probabilistic climate projections. Philos. Trans. Roy. Soc. London, 365, 20532075.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., S. Lee, and M. P. Baldwin, 2003: Atmospheric processes governing the Northern Hemisphere annular mode/North Atlantic Oscillation. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 81–112.

  • Trenberth, K. E., and Coauthors, 2007: Observations: Surface and atmospheric climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 235–336.

  • Wang, H., S. Schubert, M. Suarez, J. Chen, M. Hoerling, A. Kumar, and P. Pegion, 2009: Attribution of the seasonality and regionality in climate trends over the United States during 1950–2000. J. Climate, 22, 25712590.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., and K. Matsuura, 1995: Smart interpolation of annually averaged air temperature in the United States. J. Appl. Meteor., 34, 25772586.

    • Search Google Scholar
    • Export Citation
  • Zwiers, F. W., and H. von Storch, 1995: Taking serial correlation into account in tests of the mean. J. Climate, 8, 336351.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 133 82 1
PDF Downloads 61 38 0

Temperature Trends in the NARCCAP Regional Climate Models

View More View Less
  • 1 National Center for Atmospheric Research, Boulder, Colorado
Restricted access

Abstract

The skill of six regional climate models (RCMs) in reproducing short-term (24-yr), observed, near-surface temperature trends when driven by reanalysis is examined. The RCMs are part of the North American Regional Climate Change Assessment Program (NARCCAP). If RCMs can reproduce observed temperature trends, then they are, in a way, demonstrating their ability to capture a type of climate change, which may be relevant to their ability to credibly simulate anthropogenic climate changes under future emission scenarios. This study finds that the NARCCAP RCMs can simulate some resolved-scale temperature trends, especially those seen recently in spring and, by and large, in winter. However, results in other seasons suggest that RCM performance in this measure may be dependent on the type and strength of the forcing behind the observed trends.

Corresponding author address: Melissa S. Bukovsky, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: bukovsky@ucar.edu

Abstract

The skill of six regional climate models (RCMs) in reproducing short-term (24-yr), observed, near-surface temperature trends when driven by reanalysis is examined. The RCMs are part of the North American Regional Climate Change Assessment Program (NARCCAP). If RCMs can reproduce observed temperature trends, then they are, in a way, demonstrating their ability to capture a type of climate change, which may be relevant to their ability to credibly simulate anthropogenic climate changes under future emission scenarios. This study finds that the NARCCAP RCMs can simulate some resolved-scale temperature trends, especially those seen recently in spring and, by and large, in winter. However, results in other seasons suggest that RCM performance in this measure may be dependent on the type and strength of the forcing behind the observed trends.

Corresponding author address: Melissa S. Bukovsky, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: bukovsky@ucar.edu
Save