• Barnes, E., D. L. Hartmann, D. M. W. Frierson, and J. Kidston, 2010: Effect of latitude on the persistence of eddy-driven jets. Geophys. Res. Lett., 37, L11804, doi:10.1029/2010GL043199.

    • Search Google Scholar
    • Export Citation
  • Barnett, T., D. Pierce, M. Latif, D. Dommenget, and R. Saravanan, 1999: Interdecadal interactions between the tropics and the mid-latitudes in the Pacific basin. Geophys. Res. Lett., 26, 615618.

    • Search Google Scholar
    • Export Citation
  • Brayshaw, D. J., B. Hoskins, and M. Blackburn, 2008: The storm-track response to idealized SST perturbations in an aquaplanet GCM. J. Atmos. Sci., 65, 28422860.

    • Search Google Scholar
    • Export Citation
  • Broer, H., C. Simó, and R. Vitolo, 2002: Bifurcations and strange attractors in the Lorenz-84 climate model with seasonal forcing. Nonlinearity, 15, doi:10.1088/0951-7715/15/4/312.

    • Search Google Scholar
    • Export Citation
  • Brohan, P., J. J. Kennedy, I. Harris, S. F. B. Tett, and P. D. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. J. Geophys. Res., 111, D12106, doi:10.1029/2005JD006548.

    • Search Google Scholar
    • Export Citation
  • Butler, A. H., D. W. J. Thompson, and T. Birner, 2011: Isentropic slopes, downgradient eddy fluxes, and the extratropical atmospheric circulation response to tropical tropospheric heating. J. Atmos. Sci., 68, 22922305.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and P. Chu, 1998: Oceanic responses to gradual transitions of equator-to-pole temperature gradients. Quart. J. Roy. Meteor. Soc., 124, 28172828.

    • Search Google Scholar
    • Export Citation
  • Cane, M., and S. Zebiak, 1985: A model El Niño-Southern Oscillation. Science, 228, 1085.

  • Freire, J. G., C. Bonatto, C. C. DaCamara, and J. A. C. Gallas, 2008: Multistability, phase diagrams, and intransitivity in the Lorenz-84 low-order atmospheric circulation model. Chaos, 18, 033121, doi:10.1063/1.2953589.

    • Search Google Scholar
    • Export Citation
  • Gerber, E., and G. Vallis, 2007: Eddy-zonal flow interactions and the persistence of the zonal index. J. Atmos. Sci., 64, 32963311.

  • Gu, D., and S. Philander, 1997: Interdecadal climate fluctuations that depend on exchanges between the tropics and the extratropics. Science, 275, 805807.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, R. Ruedy, K. Lo, D. Lea, and M. Medina-Elizade, 2006: Global temperature change. Proc. Natl. Acad. Sci. USA, 103, 14 28814 293, doi:10.1073/pnas.0606291103.

    • Search Google Scholar
    • Export Citation
  • Hernández-Deckers, D., and J.-S. von Storch, 2011: The energetics response to a warmer climate: Relative contributions from the transient and stationary eddies. Earth Syst. Dyn., 2, 105120.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M., and M. Ting, 1994: Organization of extratropical transients during El Niño. J. Climate, 7, 745766.

  • Hoerling, M., M. Ting, and A. Kumar, 1995: Zonal flow–stationary wave relationship during El Niño: Implications for seasonal forecasting. J. Climate, 8, 18381852.

    • Search Google Scholar
    • Export Citation
  • Holton, J., 2004: An Introduction to Dynamic Meteorology. 4th ed. Elsevier Academic Press, 535 pp.

  • Inatsu, M., H. Mukougawa, and S.-P. Xie, 2003: Atmospheric response to zonal variations in midlatitude SST: Transient and stationary eddies and their feedback. J. Climate, 16, 33143329.

    • Search Google Scholar
    • Export Citation
  • Jain, S., 1998: Low-frequency climate variability: Inferences from simple models. M.S. thesis, Dept. of Civil and Environmental Engineering, Utah State University, 187 pp.

  • Jain, S., U. Lall, and M. E. Mann, 1999: Seasonality and interannual variations of North Hemisphere temperature: Equator-to-pole gradient and ocean–land contrast. J. Climate, 12, 10861100.

    • Search Google Scholar
    • Export Citation
  • Jones, P. D., and K. R. Briffa, 1992: Global surface air temperature variations during the twentieth century: Part 1, spatial, temporal, and seasonal details. Holocene, 2, 165179.

    • Search Google Scholar
    • Export Citation
  • Joseph, R., M. Ting, and P. J. Kushner, 2004: The global stationary wave response to climate change in a coupled GCM. J. Climate, 17, 540556.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kaplan, A., M. Cane, Y. Kushnir, A. Clement, M. Blumenthal, and B. Rajagopalan, 1998: Analyses of global sea surface temperature 1856–1991. J. Geophys. Res., 103 (C9), 567589.

    • Search Google Scholar
    • Export Citation
  • Kidston, J., D. Frierson, J. Renwick, and G. Vallis, 2010: Observations, simulations, and dynamics of jet stream variability and annular modes. J. Climate, 23, 61866199.

    • Search Google Scholar
    • Export Citation
  • Kleeman, R., J. McCreary, and B. Klinger, 1999: A mechanism for generating ENSO decadal variability. Geophys. Res. Lett., 26, 17431746.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., and M. Hoerling, 1995: Prospects and limitations of seasonal atmospheric GCM predictions. Bull. Amer. Meteor. Soc., 76, 335345.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., A. Leetmaa, and M. Ji, 1994: Simulations of atmospheric variability induced by sea surface temperatures and implications for global warming. Science, 266, 632634.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1994: Climate dynamics and global change. Annu. Rev. Fluid Mech., 26, 353378.

  • Lindzen, R. S., and W. Pan, 1994: A note on orbital control of equator-pole heat fluxes. Climate Dyn., 10, 4957.

  • Loader, C., 1999: Local Regression and Likelihood. Statistics and Computing Series, Springer, 290 pp.

  • Lorenz, D. J., and E. T. DeWeaver, 2007: Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J. Geophys. Res., 112, D10119, doi:10.1029/2006JD008087.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1982: Low-order models of atmospheric circulations. J. Meteor. Soc. Japan, 60, 255267.

  • Lorenz, E. N., 1984: Irregularity: A fundamental property of the atmosphere. Tellus, 36A, 98100.

  • Lorenz, E. N., 1990: Can chaos and intransitivity lead to interannual variability? Tellus, 42A, 378389.

  • Lu, J., G. Chen, and D. M. W. Frierson, 2008: Response of the zonal mean atmospheric circulation to El Niño versus global warming. J. Climate, 21, 58355851.

    • Search Google Scholar
    • Export Citation
  • Lu, J., G. Chen, and D. M. W. Frierson, 2010: The position of the midlatitude storm track and eddy-driven westerlies in aquaplanet AGCMs. J. Atmos. Sci., 67, 39844000.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., and J. Park, 1996: Greenhouse warming and changes in the seasonal cycle of temperature: Model versus observations. Geophys. Res. Lett., 23, 11111114.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 2003: Tropical Pacific Ocean heat content variations and ENSO persistence barriers. Geophys. Res. Lett., 30, 1480, doi:10.1029/2003GL016872.

    • Search Google Scholar
    • Export Citation
  • Mechoso, C., A. Kitoh, S. Moorthi, and A. Arakawa, 1987: Numerical simulations of the atmospheric response to a sea surface temperature anomaly over the equatorial eastern Pacific Ocean. Mon. Wea. Rev., 115, 29362956.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., W. M. Washington, C. M. Ammann, J. M. Arblaster, T. M. L. Wigley, and C. Tebaldi, 2004: Combinations of natural and anthropogenic forcings in twentieth-century climate. J. Climate, 17, 37213727.

    • Search Google Scholar
    • Export Citation
  • Müller, W., and E. Roeckner, 2008: ENSO teleconnections in projections of future climate in ECHAM5/MPI-OM. Climate Dyn., 31, 533549.

    • Search Google Scholar
    • Export Citation
  • Munnich, M., M. A. Cane, and S. E. Zebiak, 1991: A study of self-excited oscillations of the tropical ocean–atmosphere system. Part II: Nonlinear cases. J. Atmos. Sci., 48, 12381248.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2008: Energy of midlatitude transient eddies in idealized simulations of changed climates. J. Climate, 21, 57975806.

    • Search Google Scholar
    • Export Citation
  • Palmer, T., 2005: Global warming in a nonlinear climate - Can we be sure? Europhys. News, 36, 4246.

  • Palmer, T., and D. Mansfield, 1986a: A study of wintertime circulation anomalies during past El Niño events using a high resolution general circulation model. I: Influence of model climatology. Quart. J. Roy. Meteor. Soc., 112, 613638.

    • Search Google Scholar
    • Export Citation
  • Palmer, T., and D. Mansfield, 1986b: A study of wintertime circulation anomalies during past El Niño events using a high resolution general circulation model. II: Variability of the seasonal mean response. Quart. J. Roy. Meteor. Soc., 112, 639660.

    • Search Google Scholar
    • Export Citation
  • Palmer, T., F. Doblas-Reyes, R. Hagedorn, and A. Weisheimer, 2005: Probabilistic prediction of climate using multi-model ensembles: From basics to applications. Philos. Trans. Roy. Soc. London, B360, 19911998.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R., N. Rayner, T. Smith, D. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625.

    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., 1995: Climate variability in a low-order coupled atmosphere-ocean model. Tellus, 47A, 473494.

  • Roebber, P. J., 2009: Planetary waves, cyclogenesis, and the irregular breakdown of zonal motion over the North Atlantic. Mon. Wea. Rev., 137, 39073917.

    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., A. A. Tsonis, and J. B. Elsner, 1997: Do climate simulations from models forced by averaged sea surface temperatures represent actual dynamics? Nonlinear Processes Geophys., 4, 93100.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C., and M. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 16061626.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Harnik, Y. Kushnir, W. Robinson, and J. Miller, 2003: Mechanisms of hemispherically symmetric climate variability. J. Climate, 16, 29602978.

    • Search Google Scholar
    • Export Citation
  • Simonnet, E. R., H. A. Dijkstra, and M. Ghil, 2009: Bifurcation analysis of ocean, atmosphere, and climate models. Computational Methods for the Atmosphere and the Oceans, R. M. Temam and J. J. Tribbia, Eds., Handbook of Numerical Analysis, Vol. 14, 187–229.

  • Strong, C., and R. Davis, 2008: Variability in the position and strength of winter jet stream cores related to Northern Hemisphere teleconnections. J. Climate, 21, 584592.

    • Search Google Scholar
    • Export Citation
  • Thomson, D. J., 1995: The seasons, global temperature, and precession. Science, 268, 5968.

  • Tziperman, E., L. Stone, M. A. Cane, and H. Jarosh, 1994: El Niño chaos: Overlapping of resonances between the seasonal cycle and the Pacific ocean-atmosphere oscillator. Science, 264, 7274.

    • Search Google Scholar
    • Export Citation
  • van Veen, L., 2003: Baroclinic flow and the Lorenz-84 model. Int. J. Bifurcation Chaos Appl. Sci. Eng., 13, 21172139.

  • van Veen, L., T. Opsteegh, and F. Verhulst, 2001: Active and passive ocean regimes in a low-order climate model. Tellus, 53A, 616628.

    • Search Google Scholar
    • Export Citation
  • Wang, C., 2004: ENSO, Atlantic climate variability, and the Walker and Hadley circulations. The Hadley Circulation: Present, Past and Future, H. F. Diaz and R. S. Bradley, Eds., Advances in Global Change Research, Vol. 21, 173–202.

  • Wild, M., and Coauthors, 2005: From dimming to brightening: Decadal changes in solar radiation at earth’s surface. Science, 308, 847850.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., A. Leetmaa, and M. Ji, 2000: ENSO prediction with Markov models: The impact of sea level. J. Climate, 13, 849871.

  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701, doi:10.1029/2005GL023684.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., and M. A. Cane, 1987: A model of El Niño–Southern Oscillation. Mon. Wea. Rev., 115, 22622278.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 311 171 8
PDF Downloads 225 127 2

Surface Temperature Gradients as Diagnostic Indicators of Midlatitude Circulation Dynamics

View More View Less
  • 1 Columbia University, New York, New York
  • | 2 University of Rome “La Sapienza,” Rome, Italy
  • | 3 Columbia University, New York, New York
Restricted access

Abstract

Zonal and meridional surface temperature gradients are considered to be determinants of large-scale atmospheric circulation patterns. However, there has been limited investigation of these gradients as diagnostic aids. Here, the twentieth-century variability in the Northern Hemisphere equator-to-pole temperature gradient (EPG) and the ocean–land temperature contrast (OLC) is explored. A secular trend in decreasing EPG and OLC is noted. Decadal and interannual (ENSO-related) variations in the joint distribution of EPG and OLC are identified, hinting at multistable climate states that may be indigenous to the climate or due to changing boundary forcings. The NH circulation patterns for cases in the tails of the joint distribution of EPG and OLC are also seen to be different. Given this context, this paper extends past efforts to develop insights into jet stream dynamics using the Lorenz-1984 model, which is forced directly and only by EPG and OLC. The joint probability distribution of jet stream and eddy energy, conditional on EPG and OLC scenarios, is investigated. The scenarios correspond to (i) warmer versus colder climate conditions and (ii) polarized ENSO phases. The latter scenario involves the use of a heuristic ENSO model to drive the Lorenz-1984 model via a modulation of the EPG or the OLC. As with GCMs, the low-order model reveals that the response to El Niño forcing is not similar to an anthropogenic warming signature. The potential uses of EPG and OLC as macro-level indicators of climate change and variability and for comparing results across GCMs and observations are indicated.

Corresponding author address: Christina Karamperidou, Department of Earth and Environmental Engineering, Columbia University, 918 S. W. Mudd Hall, 500 West 120th Street, New York, NY 10027. E-mail: ck2424@columbia.edu

Abstract

Zonal and meridional surface temperature gradients are considered to be determinants of large-scale atmospheric circulation patterns. However, there has been limited investigation of these gradients as diagnostic aids. Here, the twentieth-century variability in the Northern Hemisphere equator-to-pole temperature gradient (EPG) and the ocean–land temperature contrast (OLC) is explored. A secular trend in decreasing EPG and OLC is noted. Decadal and interannual (ENSO-related) variations in the joint distribution of EPG and OLC are identified, hinting at multistable climate states that may be indigenous to the climate or due to changing boundary forcings. The NH circulation patterns for cases in the tails of the joint distribution of EPG and OLC are also seen to be different. Given this context, this paper extends past efforts to develop insights into jet stream dynamics using the Lorenz-1984 model, which is forced directly and only by EPG and OLC. The joint probability distribution of jet stream and eddy energy, conditional on EPG and OLC scenarios, is investigated. The scenarios correspond to (i) warmer versus colder climate conditions and (ii) polarized ENSO phases. The latter scenario involves the use of a heuristic ENSO model to drive the Lorenz-1984 model via a modulation of the EPG or the OLC. As with GCMs, the low-order model reveals that the response to El Niño forcing is not similar to an anthropogenic warming signature. The potential uses of EPG and OLC as macro-level indicators of climate change and variability and for comparing results across GCMs and observations are indicated.

Corresponding author address: Christina Karamperidou, Department of Earth and Environmental Engineering, Columbia University, 918 S. W. Mudd Hall, 500 West 120th Street, New York, NY 10027. E-mail: ck2424@columbia.edu
Save