• Allan, R. J., and T. J. Ansell, 2006: A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP3): 1850–2004. J. Climate, 19, 58165842.

    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., M. M. Holland, E. C. Hunke, and R. E. Moritz, 2005: Maintenance of the sea ice edge. J. Climate, 18, 29032921.

  • Bitz, C. M., K. M. Shell, P. R. Gent, D. Bailey, G. Danabasoglu, K. C. Armour, M. M. Holland, and J. T. Kiehl, 2012: Climate sensitivity in the Community Climate System Model, version 4. J. Climate, 25, 30533070.

    • Search Google Scholar
    • Export Citation
  • Boville, B. A., 1991: Sensitivity of simulated climate to model resolution. J. Climate, 4, 469485.

  • Boville, B. A., and P. R. Gent, 1998: The NCAR Climate System Model, version 1. J. Climate, 11, 11151130.

  • Brohan, P., J. J. Kennedy, I. Harris, S. F. Tett, and P. D. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: A new dataset from 1850. J. Geophys. Res., 111, D12106, doi:10.1029/2005JD006548.

    • Search Google Scholar
    • Export Citation
  • Capotondi, A., A. Wittenberg, and S. Masina, 2006: Spatial and temporal structure of tropical Pacific interannual variability in 20th century coupled simulations. Ocean Modell., 15, 274298, doi:10.1016/j.ocemod.2006.02.004.

    • Search Google Scholar
    • Export Citation
  • Cavalieri, D., C. Parkinson, P. Gloersen, and H. J. Zwally, 1996: Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I passive microwave data. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/nsidc-0051.html.]

  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model, version 3 (CCSM3). J. Climate, 19, 21222161.

  • Cunningham, S. A., S. G. Alderson, B. A. King, and M. A. Brandon, 2003: Transport and variability of the Atlantic Circumpolar Current in Drake Passage. J. Geophys. Res., 108, 8084, doi:10.1029/2001JC001147.

    • Search Google Scholar
    • Export Citation
  • Cunningham, S. A., and Coauthors, 2007: Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science, 317, 935938, doi:10.1126/science.1141304.

    • Search Google Scholar
    • Export Citation
  • Dai, A., and K. E. Trenberth, 2002: Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. J. Hydrometeor., 3, 660687.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., 1998: On the wind-driven circulation of the uncoupled and coupled NCAR climate system ocean model. J. Climate, 11, 14421454.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., W. G. Large, and B. P. Briegleb, 2010: Climate impacts of parameterized Nordic Sea overflows. J. Geophys. Res., 115, C11005, doi:10.1029/2010JC006243.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., S. Bates, B. P. Briegleb, S. R. Jayne, M. Jochum, W. G. Large, S. Peacock, and S. G. Yeager, 2012: The CCSM4 ocean component. J. Climate, 25, 13611389.

    • Search Google Scholar
    • Export Citation
  • Gebbie, G., I. Eisenman, A. Wittenberg, and E. Tziperman, 2007: Modulation of westerly wind bursts by sea surface temperature: A semistochastic feedback for ENSO. J. Atmos. Sci., 64, 32813295.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., S. G. Yeager, R. B. Neale, S. Levis, and D. A. Bailey, 2010: Improvements in a half degree atmosphere/land version of the CCSM. Climate Dyn., 34, 819833, doi:10.1007/s00382-009-0614-8.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991.

  • Guilyardi, E., 2006: El Niño–mean state–seasonal cycle interactions in a multi-model ensemble. Climate Dyn., 26, 329348, doi:10.1007/s00382-005-0084-6.

    • Search Google Scholar
    • Export Citation
  • Hack, J., J. Caron, G. Danabasoglu, K. Oleson, C. Bitz, and J. E. Truesdale, 2006: CCSM–CAM3 climate simulation sensitivity to changes in horizontal resolution. J. Climate, 19, 22672289.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., and M. N. Raphael, 2006: Twentieth century simulation of the Southern Hemisphere climate in coupled models. Part II: Sea ice conditions and variability. Climate Dyn., 26, 229245.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., D. A. Bailey, B. P. Briegleb, B. Light, and E. Hunke, 2012: Improved sea ice shortwave radiation physics in CCSM4: The impact of melt ponds and aerosols on Arctic sea ice. J. Climate, 25, 14131430.

    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., and W. H. Lipscomb, 2008: CICE: The Los Alamos sea ice model user’s manual, version 4. Los Alamos National Laboratory Tech. Rep. LA-CC-06-012, 76 pp.

  • Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Climate, 21, 51455153.

    • Search Google Scholar
    • Export Citation
  • Jablonowski, C., and D. L. Williamson, 2006: A baroclinic instability test case for atmospheric model dynamical cores. Quart. J. Roy. Meteor. Soc., 132, 29432976.

    • Search Google Scholar
    • Export Citation
  • Jahn, A., and Coauthors, 2012: Late–twentieth-century simulation of Arctic sea ice and ocean properties in the CCSM4. J. Climate, 25, 14311452.

    • Search Google Scholar
    • Export Citation
  • Jochum, M., G. Danabasoglu, M. Holland, Y.-O. Kwon, and W. G. Large, 2008: Ocean viscosity and climate. J. Geophys. Res., 113, C06017, doi:10.1029/2007JC004515.

    • Search Google Scholar
    • Export Citation
  • Jochum, M., B. Fox-Kemper, P. H. Molnar, and C. Shields, 2009: Differences in the Indonesian seaway in a coupled climate model and their relevance to Pliocene climate and El Niño. Paleooceanography, 24, PA1212, doi:10.1029/2008PA001678.

    • Search Google Scholar
    • Export Citation
  • Jochum, M., S. Yeager, K. Lindsay, K. Moore, and R. Murtugudde, 2010: Quantification of the feedback between phytoplankton and ENSO in the Community Climate System Model. J. Climate, 23, 29162925.

    • Search Google Scholar
    • Export Citation
  • Johns, W. E., and Coauthors, 2011: Continuous, array-based estimates of Atlantic Ocean heat transport at 26.5°N. J. Climate, 24, 24292449.

    • Search Google Scholar
    • Export Citation
  • Johnson, G., B. Sloyan, W. Kessler, and K. McTaggart, 2002: Direct measurements of upper ocean currents and water properties across the tropical Pacific during the 1990s. Prog. Oceanogr., 52, 3161.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kiehl, J. T., C. A. Shields, J. J. Hack, and W. D. Collins, 2006: The climate sensitivity of the Community Climate System Model version 3 (CCSM3). J. Climate, 19, 25842596.

    • Search Google Scholar
    • Export Citation
  • Klinker, E., and P. D. Sardeshmukh, 1992: The diagnosis of mechanical dissipation in the atmosphere from large-scale balance requirements. J. Atmos. Sci., 49, 608627.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2009: The global climatology of an interannually varying air-sea flux data set. Climate Dyn., 33, 341364, doi:10.1007/s00382-008-0441-3.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., K. W. Oleson, M. G. Flanner, C. G. Fletcher, P. J. Lawrence, S. Levis, S. C. Swenson, and G. B. Bonan, 2012: The CCMS4 land simulations, 1850–2005: Assessment of surface climate and new capabilities. J. Climate, 25, 22402260.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., T. Boyer, M. Conkright, D. Johnson, T. O’Brien, J. Antonov, C. Stephens, and R. Garfield, 1998: Introduction. Vol. I, World Ocean Database 1998, NOAA Atlas NESDIS 18, 346 pp.

  • Lin, S. J., 2004: A “vertically lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 22932307.

  • Matsuura, K., and C. J. Willmott, cited 2009: Terrestrial air temperature: 1900-2008 gridded monthly time series, version 2.01. [Available online at http://climate.geog.udel.edu/~climate/.]

  • Milton, S. F., and C. A. Wilson, 1996: The impact of parameterized subgrid-scale orographic forcing of systematic errors in a global NWP model. Mon. Wea. Rev., 124, 20232045.

    • Search Google Scholar
    • Export Citation
  • National Oceanic and Atmospheric Administration, cited 2006: ETOPO2v2: 2-Minute Gridded Global Relief Data. [Available online at http://www.ngdc.noaa.gov/mgg/fliers/06mgg01.html.]

  • Neale, R. B., J. H. Richter, and M. Jochum, 2008: The impact of convection on ENSO: From a delayed oscillator to a series of events. J. Climate, 21, 59045924.

    • Search Google Scholar
    • Export Citation
  • Otto-Bliesner, B. L., E. C. Brady, and C. A. Shields, 2002: Late Cretaceous ocean: Coupled simulations with the National Center for Atmospheric Research Climate System Model. J. Geophys. Res., 107, 4019, doi:10.1029/2001JD000821.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., P. Brohan, D. E. Parker, C. K. Folland, J. J. Kennedy, M. Vanicek, T. Ansell, and S. F. B. Tett, 2006: Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: The HadSST2 dataset. J. Climate, 19, 446469.

    • Search Google Scholar
    • Export Citation
  • Schopf, P. S., and R. J. Burgman, 2006: A simple mechanism for ENSO residuals and asymmetry. J. Climate, 19, 31673179.

  • Smith, R., and Coauthors, 2010: The Parallel Ocean Program (POP) reference manual, ocean component of the Community Climate System Model (CCSM). LANL Tech. Rep. LAUR-10-01853, 141 pp.

  • Steele, M., R. Morley, and W. Ermold, 2001: PHC: A global ocean hydrography with a high-quality Arctic Ocean. J. Climate, 14, 20792087.

    • Search Google Scholar
    • Export Citation
  • Stevenson, S., B. Fox-Kemper, M. Jochum, Rajagopalan, S. Yeager, 2010: ENSO model validation using wavelet probability analysis. J. Climate, 23, 55405547.

    • Search Google Scholar
    • Export Citation
  • Uttal, T., and Coauthors, 2002: Surface heat budget of the Arctic Ocean. Bull. Amer. Meteor. Soc., 83, 255276.

  • Williamson, D. L., J. T. Kiehl, and J. J. Hack, 1995: Climate sensitivity of the NCAR Community Climate System Model (CCM2) to horizontal resolution. Climate Dyn., 11, 377397.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., 2009: Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett., 36, L12702, doi:10.1029/2009GL038710.

    • Search Google Scholar
    • Export Citation
  • Yeager, S. G., C. A. Shields, W. G. Large, and J. J. Hack, 2006: The low-resolution CCSM3. J. Climate, 19, 25452566.

  • Yin, X., A. Gruber, and P. Arkin, 2004: Comparison of CPCP and CMAP merged guage–satellite monthly precipitation products for the period 1970–2001. J. Hydrometeor., 5, 12071222.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 421 271 25
PDF Downloads 248 149 8

The Low-Resolution CCSM4

View More View Less
  • 1 National Center for Atmospheric Research, Boulder, Colorado
Restricted access

Abstract

The low-resolution version of the Community Climate System Model, version 4 (CCSM4) is a computationally efficient alternative to the intermediate and standard resolution versions of this fully coupled climate system model. It employs an atmospheric horizontal grid of 3.75° × 3.75° and 26 levels in the vertical with a spectral dynamical core (T31) and an oceanic horizontal grid that consists of a nominal 3° resolution with 60 levels in the vertical. This low-resolution version (T31x3) can be used for a variety of applications including long equilibrium simulations, development work, and sensitivity studies. The T31x3 model is validated for modern conditions by comparing to available observations. Significant problems exist for Northern Hemisphere Arctic locales where sea ice extent and thickness are excessive. This is partially due to low heat transport in T31x3, which translates into a globally averaged sea surface temperature (SST) bias of −1.54°C compared to observational estimates from the 1870–99 historical record and a bias of −1.26°C compared to observations from the 1986–2005 historical record. Maximum zonal wind stress magnitude in the Southern Hemisphere matches observational estimates over the ocean, although its placement is incorrectly displaced equatorward. Aspects of climate variability in T31x3 compare to observed variability, especially so for ENSO where the amplitude and period approximate observations. T31x3 surface temperature anomaly trends for the twentieth century also follow observations. An examination of the T31x3 model relative to the intermediate CCSM4 resolution (finite volume dynamical core 1.9° × 2.5°) for preindustrial conditions shows the T31x3 model approximates this solution for climate state and variability metrics examined here.

Corresponding author address: Christine A. Shields, 1850 Table Mesa Drive, Boulder, CO 80305. E-mail: shields@ucar.edu

This article is included in the CCSM4 Special Collection.

Abstract

The low-resolution version of the Community Climate System Model, version 4 (CCSM4) is a computationally efficient alternative to the intermediate and standard resolution versions of this fully coupled climate system model. It employs an atmospheric horizontal grid of 3.75° × 3.75° and 26 levels in the vertical with a spectral dynamical core (T31) and an oceanic horizontal grid that consists of a nominal 3° resolution with 60 levels in the vertical. This low-resolution version (T31x3) can be used for a variety of applications including long equilibrium simulations, development work, and sensitivity studies. The T31x3 model is validated for modern conditions by comparing to available observations. Significant problems exist for Northern Hemisphere Arctic locales where sea ice extent and thickness are excessive. This is partially due to low heat transport in T31x3, which translates into a globally averaged sea surface temperature (SST) bias of −1.54°C compared to observational estimates from the 1870–99 historical record and a bias of −1.26°C compared to observations from the 1986–2005 historical record. Maximum zonal wind stress magnitude in the Southern Hemisphere matches observational estimates over the ocean, although its placement is incorrectly displaced equatorward. Aspects of climate variability in T31x3 compare to observed variability, especially so for ENSO where the amplitude and period approximate observations. T31x3 surface temperature anomaly trends for the twentieth century also follow observations. An examination of the T31x3 model relative to the intermediate CCSM4 resolution (finite volume dynamical core 1.9° × 2.5°) for preindustrial conditions shows the T31x3 model approximates this solution for climate state and variability metrics examined here.

Corresponding author address: Christine A. Shields, 1850 Table Mesa Drive, Boulder, CO 80305. E-mail: shields@ucar.edu

This article is included in the CCSM4 Special Collection.

Save