Observed Antarctic Interannual Climate Variability and Tropical Linkages

David P. Schneider Climate and Global Dynamics Division, Earth System Laboratory, National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by David P. Schneider in
Current site
Google Scholar
PubMed
Close
,
Yuko Okumura Climate and Global Dynamics Division, Earth System Laboratory, National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Yuko Okumura in
Current site
Google Scholar
PubMed
Close
, and
Clara Deser Climate and Global Dynamics Division, Earth System Laboratory, National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Clara Deser in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study reviews the mechanisms associated with Antarctic–tropical climate linkages and presents new analyses of the seasonality and spatial patterns of tropical climate signals in the Antarctic for the late 1950s to the present. Tropical climate signals are primarily communicated to the Antarctic via the Pacific–South America (PSA) pattern and the southern annular mode (SAM). The impacts of these circulation patterns and their tropical linkages are evident in regressions of seasonally stratified Antarctic station temperature data and annually resolved ice core records on global fields of sea surface temperature, sea level pressure, and precipitation. Temperature and ice core anomalies in the Antarctic Peninsula region and adjoining areas of West Antarctica are significantly impacted by the PSA, interpreted as a Rossby wave train driven by anomalous tropical deep convection during ENSO events. This pattern is most evident in the austral spring, consistent with recent studies, suggesting that atmospheric conditions for Rossby wave propagation are most favorable during this season. During austral summer at the peak of the ENSO cycle, temperature anomalies at East Antarctic coastal stations exhibit significant correlations with tropical Pacific anomalies. This linkage reflects the influence of anomalous tropical heating on the position and strength of the subtropical jets and is consistent with changes in eddy momentum fluxes that alter the mean meridional circulation associated with the SAM. Of the ice cores that exhibit tropical linkages, most tend to be associated with the PSA teleconnection. The implications of the study’s findings for understanding Antarctic climate variability and climate change from seasonal to decadal time scales are also discussed.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: David P. Schneider, Climate and Global Dynamics Division, Earth System Laboratory, National Center for Atmospheric Research, Box 3000, Boulder, CO 80307-3000. E-mail: dschneid@ucar.edu

Abstract

This study reviews the mechanisms associated with Antarctic–tropical climate linkages and presents new analyses of the seasonality and spatial patterns of tropical climate signals in the Antarctic for the late 1950s to the present. Tropical climate signals are primarily communicated to the Antarctic via the Pacific–South America (PSA) pattern and the southern annular mode (SAM). The impacts of these circulation patterns and their tropical linkages are evident in regressions of seasonally stratified Antarctic station temperature data and annually resolved ice core records on global fields of sea surface temperature, sea level pressure, and precipitation. Temperature and ice core anomalies in the Antarctic Peninsula region and adjoining areas of West Antarctica are significantly impacted by the PSA, interpreted as a Rossby wave train driven by anomalous tropical deep convection during ENSO events. This pattern is most evident in the austral spring, consistent with recent studies, suggesting that atmospheric conditions for Rossby wave propagation are most favorable during this season. During austral summer at the peak of the ENSO cycle, temperature anomalies at East Antarctic coastal stations exhibit significant correlations with tropical Pacific anomalies. This linkage reflects the influence of anomalous tropical heating on the position and strength of the subtropical jets and is consistent with changes in eddy momentum fluxes that alter the mean meridional circulation associated with the SAM. Of the ice cores that exhibit tropical linkages, most tend to be associated with the PSA teleconnection. The implications of the study’s findings for understanding Antarctic climate variability and climate change from seasonal to decadal time scales are also discussed.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: David P. Schneider, Climate and Global Dynamics Division, Earth System Laboratory, National Center for Atmospheric Research, Box 3000, Boulder, CO 80307-3000. E-mail: dschneid@ucar.edu
Save
  • Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167.

    • Search Google Scholar
    • Export Citation
  • Allan, R., and T. Ansell, 2006: A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J. Climate, 19, 58165842.

    • Search Google Scholar
    • Export Citation
  • Bals-Elsholz, T., E. Atallah, L. Bosart, T. Wasula, M. Cempa, and A. Lupo, 2001: The wintertime Southern Hemisphere split jet: Structure, variability, and evolution. J. Climate, 14, 41914215.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., and S. H. Wang, 2008: A review of the temporal and spatial variability of the Arctic and Antarctic atmospheric circulations based upon ERA-40. Dyn. Atmos. Oceans, 44, 213243.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., A. N. Rogers, P. Kållberg, R. I. Cullather, J. W. C. White, and K. J. Kreutz, 2000: ECMWF analyses and reanalyses depiction of ENSO signal in Antarctic precipitation. J. Climate, 13, 14061420.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., A. J. Monaghan, and Z. C. Guo, 2004: Modeling the ENSO modulation of Antarctic climate in the late 1990s with the polar MM5. J. Climate, 17, 109132.

    • Search Google Scholar
    • Export Citation
  • Cai, W. J., and I. G. Watterson, 2002: Modes of interannual variability of the Southern Hemisphere circulation simulated by the CSIRO climate model. J. Climate, 15, 11591174.

    • Search Google Scholar
    • Export Citation
  • Carvalho, L. M. V., C. Jones, and T. Ambrizzi, 2005: Opposite phases of the Antarctic Oscillation and relationships with intraseasonal to interannual activity in the tropics during the austral summer. J. Climate, 18, 702718.

    • Search Google Scholar
    • Export Citation
  • Chapman, W. L., and J. E. Walsh, 2007: A synthesis of Antarctic temperatures. J. Climate, 20, 40964117.

  • Ciasto, L. M., and D. W. J. Thompson, 2008: Observations of large-scale ocean–atmosphere interaction in the Southern Hemisphere. J. Climate, 21, 12441259.

    • Search Google Scholar
    • Export Citation
  • Cullather, R. I., D. H. Bromwich, and M. L. VanWoert, 1996: Interannual variations in Antarctic precipitation related to El Niño-Southern Oscillation. J. Geophys. Res., 101, 19 10919 118.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Capotondi, R. Saravanan, and A. S. Phillips, 2006: Tropical Pacific and Atlantic climate variability in CCSM3. J. Climate, 19, 24512481.

    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, S.-P. Xie, and A. S. Phillips, 2010: Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci., 2, 115143, doi:10.1146/annurev-marine-120408-151453.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., E. J. Steig, D. S. Battisti, and M. Kuttel, 2011: Winter warming in West Antarctica caused by central tropical Pacific warming. Nat. Geosci., 4, 398403, doi:10.1038/ngeo1129.

    • Search Google Scholar
    • Export Citation
  • Divine, D. V., and Coauthors, 2009: Tropical Pacific–high latitude South Atlantic teleconnections as seen in δ18O variability in Antarctic coastal ice cores. J. Geophys. Res., 114, D11112, doi:10.1029/2008JD010475.

    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161102.

  • Fogt, R. L., and D. H. Bromwich, 2006: Decadal variability of the ENSO teleconnection to the high-latitude South Pacific governed by coupling with the southern annular mode. J. Climate, 19, 979997.

    • Search Google Scholar
    • Export Citation
  • Fogt, R. L., D. H. Bromwich, K. M. Hines, 2011: Understanding the SAM influence on the South Pacific ENSO teleconnection. Climate Dyn., 36, 15551576, doi:10.1007/s00382-010-0905-0.

    • Search Google Scholar
    • Export Citation
  • Ghil, M., and K. Mo, 1991: Intraseasonal oscillations in the global atmosphere. Part I: Northern Hemisphere and tropics. J. Atmos. Sci., 48, 752779.

    • Search Google Scholar
    • Export Citation
  • Gong, T., S. B. Feldstein, and D. Luo, 2010: The impact of ENSO on wave breaking and southern annular mode events. J. Atmos. Sci., 67, 28542870.

    • Search Google Scholar
    • Export Citation
  • Gregory, S., and D. Noone, 2008: Variability in the teleconnection between the El Niño–Southern Oscillation and West Antarctic climate deduced from West Antarctic ice core isotope records. J. Geophys. Res., 113, D17110, doi:10.1029/2007JD009107.

    • Search Google Scholar
    • Export Citation
  • Hulme, M., T. J. Osborn, and T. C. Johns, 1998: Precipitation sensitivity to global warming: Comparison of observations with HadCM2 simulations. Geophys. Res. Lett., 25, 33793382.

    • Search Google Scholar
    • Export Citation
  • Ichiyanagi, K., A. Numaguti, and K. Kato, 2002: Interannual variation of stable isotopes in Antarctic precipitation in response to El Niño-Southern Oscillation. Geophys. Res. Lett., 29, 1001, doi:10.1029/2000GL012815.

    • Search Google Scholar
    • Export Citation
  • Jin, D., and B. P. Kirtman, 2009: Why the Southern Hemisphere ENSO responses lead ENSO. J. Geophys. Res., 114, D23101, doi:10.1029/2009JD012657.

    • Search Google Scholar
    • Export Citation
  • Jin, D., and B. P. Kirtman, 2010: How the annual cycle affects the extratropical response to ENSO. J. Geophys. Res., 115, D06102, doi:10.1029/2009JD012660.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643.

    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., 1989: Southern Hemisphere circulation features associated with El Niño–Southern Oscillation events. J. Climate, 2, 12391252.

    • Search Google Scholar
    • Export Citation
  • Kwok, R., and J. C. Comiso, 2002: Spatial patterns of variability in Antarctic surface temperature: Connections to the Southern Hemisphere annular mode and the Southern Oscillation. Geophys. Res. Lett., 29, 1705, doi:10.1029/2002GL015415.

    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., and D. W. J. Thompson, 2006: Observed relationships between the El Niño–Southern Oscillation and the extratropical zonal-mean circulation. J. Climate, 19, 276287.

    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., and D. L. Hartmann, 2000: Wave-maintained annular modes of climate variability. J. Climate, 13, 44144429.

  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079.

    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., 2003: Trends in the southern annular mode from observations and reanalyses. J. Climate, 16, 41344143.

  • Marshall, G. J., 2009: On the annual and semiannual cycles of precipitation across Antarctica. Int. J. Climatol., 29, 22982308.

  • Marshall, G. J., A. Orr, N. P. M. van Lipzig, and J. C. King, 2006: The impact of a changing Southern Hemisphere annular mode on Antarctic Peninsula summer temperatures. J. Climate, 19, 53885404.

    • Search Google Scholar
    • Export Citation
  • Masson-Delmotte, V., and Coauthors, 2008: A review of Antarctic surface snow isotopic composition: Observations, atmospheric circulation, and isotopic modeling. J. Climate, 21, 33593387.

    • Search Google Scholar
    • Export Citation
  • Masson-Delmotte, V., and Coauthors, 2011: A comparison of the present and last interglacial periods in six Antarctic ice cores. Climate Past, 7, 397423.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., 2000: Relationships between low-frequency variability in the Southern Hemisphere and sea surface temperature anomalies. J. Climate, 13, 35993610.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and G. H. White, 1985: Teleconnections in the Southern Hemisphere. Mon. Wea. Rev., 113, 2237.

  • Mo, K. C., and R. W. Higgins, 1998: The Pacific–South American modes and tropical convection during the Southern Hemisphere winter. Mon. Wea. Rev., 126, 15811596.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and J. N. Paegle, 2001: The Pacific–South American modes and their downstream effects. Int. J. Climatol., 21, 12111229.

  • Naik, S. S., M. Thamban, C. M. Laluraj, B. L. Redkar, and A. Chaturvedi, 2010: A century of climate variability in central Dronning Maud Land, East Antarctica, and its relation to southern annular mode and El Niño-Southern Oscillation. J. Geophys. Res., 115, D16102, doi:10.1029/2009JD013268.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., D. S. Battisti, A. C. Hirst, F.-F. Jin, Y. Wakata, T. Yamagata, and S. E. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103, 14 26114 290.

    • Search Google Scholar
    • Export Citation
  • Nicolas, J. P., and D. H. Bromwich, 2011: Climate of West Antarctica and influence of marine air intrusions. J. Climate, 24, 4967.

  • Okumura, Y. M., D. Schneider, C. Deser, and R. Wilson, 2012: Decadal–interdecadal climate variability over Antarctica and linkages to the tropics: Analysis of ice core, instrumental, and tropical proxy data. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Peel, D. A., R. Mulvaney, and B. M. Davison, 1988: Stable-isotope / air-temperature relationships in ice cores from Dolleman Island and the Palmer Land Plateau, Antarctic Peninsula. Ann. Glaciol., 10, 130136.

    • Search Google Scholar
    • Export Citation
  • Perlwitz, J., S. Pawson, R. L. Fogt, J. E. Nielsen, and W. D. Neff, 2008: Impact of stratospheric ozone hole recovery on Antarctic climate. Geophys. Res. Lett., 35, L08714, doi:10.1029/2008GL033317.

    • Search Google Scholar
    • Export Citation
  • Renwick, J. A., 2002: Southern Hemisphere circulation and relations with sea ice and sea surface temperature. J. Climate, 15, 30583068.

    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., and C. R. Mechoso, 2003: Circulation regimes and low-frequency oscillations in the South Pacific sector. Mon. Wea. Rev., 131, 15661576.

    • Search Google Scholar
    • Export Citation
  • Russell, A., and G. R. McGregor, 2010: Southern Hemisphere atmospheric circulation: Impacts on Antarctic climate and reconstructions from Antarctic ice core data. Climatic Change, 99, 155192, doi:10.1007/s10584-009-9673-4.

    • Search Google Scholar
    • Export Citation
  • Savage, M. L., C. R. Stearns, and G. A. Weidner, 1988: The Southern Oscillation signal in Antarctica. Preprints, Second Conf. on Polar Meteorology and Oceanography, Madison, WI, Amer. Meteor. Soc., 141–144.

  • Scarchilli, C., M. Frezzottu, and P. M. Ruti, 2011: Snow precipitation at four ice core sites in East Antarctica: Provenance, seasonality and blocking factors. Climate Dyn., 37, 21072125, doi:10.1007/s00382-010-0946-4.

    • Search Google Scholar
    • Export Citation
  • Schneider, D. P., and D. C. Noone, 2007: Spatial covariance of water isotope records in a global network of ice cores spanning twentieth-century climate change. J. Geophys. Res., 112, D18105, doi:10.1029/2007JD008652.

    • Search Google Scholar
    • Export Citation
  • Schneider, D. P., and E. J. Steig, 2008: Ice cores record significant 1940s Antarctic warmth related to tropical climate variability. Proc. Natl. Acad. Sci. USA, 105, 12 15412 158, doi:10.1073/pnas.0803627105.

    • Search Google Scholar
    • Export Citation
  • Schneider, D. P., E. J. Steig, and J. C. Comiso, 2004: Recent climate variability in Antarctica from satellite-derived temperature data. J. Climate, 17, 15691583.

    • Search Google Scholar
    • Export Citation
  • Schneider, D. P., E. J. Steig, T. D. van Ommen, D. A. Dixon, P. A. Mayewski, J. M. Jones, and C. M. Bitz, 2006: Antarctic temperatures over the past two centuries from ice cores. Geophys. Res. Lett., 33, L16707, doi:10.1029/2006GL027057.

    • Search Google Scholar
    • Export Citation
  • Schneider, D. P., C. Deser, Y. M. Okumura, 2012: An assessment and interpretation of the observed warming of West Antarctica in the austral spring, Climate Dyn., 38, 332347, doi: 10.1007/s00382-010-0985-x.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Harnik, Y. Kushnir, W. Robinson, and J. Miller, 2003: Mechanisms of hemispherically symmetric climate variability. J. Climate, 16, 29602978.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Harnik, W. Robinson, Y. Kushnir, M. Ting, H.-P. Huang, and J. Velez, 2005: Mechanisms of ENSO-forcing of hemispherically symmetric precipitation variability. Quart. J. Roy. Meteor. Soc., 131, 15011527, doi:10.1256/qj.04.96.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, M. Ting, M. A. Cane, N. Harnik, and Y. Kushnir, 2010: Adjustment of the atmospheric circulation to tropical Pacific SST anomalies: Variability of transient eddy propagation in the Pacific–North America sector. Quart. J. Roy. Meteor. Soc., 136, 277296, doi:10.1002/qj.588.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296.

    • Search Google Scholar
    • Export Citation
  • Son, S.-W., N. F. Tandon, L. M. Polvani, and D. W. Waugh, 2009: Ozone hole and Southern Hemisphere climate change. Geophys. Res. Lett., 36, L15705, doi:10.1029/2009GL038671.

    • Search Google Scholar
    • Export Citation
  • Steig, E. J., and Coauthors, 2005: High-resolution ice cores from USITASE (West Antarctica): Development and validation of chronologies and determination of precision and accuracy. Ann. Glaciol., 41, 7784.

    • Search Google Scholar
    • Export Citation
  • Steig, E. J., Q. Ding, D. S. Battisti, A. Jenkins, 2012: Tropical forcing of circumpolar deep water inflow and outlet glacier thinning in the Amundsen Sea Embayment, West Antarctica. Ann. Glaciol., 53, 1928.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., J. M. Wallace, and G. C. Hegerl, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1975: A quasi-biennial standing wave in Southern Hemisphere and interrelations with sea surface temperature. Quart. J. Roy. Meteor. Soc., 101, 5574.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1984: Signal versus noise in the Southern Oscillation. Mon. Wea. Rev., 112, 326332.

  • Trenberth, K. E., and J. Caron, 2000: The Southern Oscillation revisited: Sea level pressures, surface temperatures, and precipitation. J. Climate, 13, 43584365.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324.

    • Search Google Scholar
    • Export Citation
  • Turner, J., 2004: The El Niño-Southern Oscillation and Antarctica. Int. J. Climatol., 24, 131.

  • Turner, J., and Coauthors, 2004: The SCAR READER project: Toward a high-quality database of mean Antarctic meteorological observations. J. Climate, 17, 28902898.

    • Search Google Scholar
    • Export Citation
  • van de Berg, W. J., M. R. van den Broeke, C. H. Reijmer, and E. van Meijgaard, 2006: Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model. J. Geophys. Res., 111, D11104, doi:10.1029/2005JD006495.

    • Search Google Scholar
    • Export Citation
  • van Lipzig, N. P. M., G. J. Marshall, A. Orr, and J. C. King, 2008: The relationship between the Southern Hemisphere annular mode and Antarctic Peninsula summer temperatures: Analysis of a high-resolution model climatology. J. Climate, 21, 16491668.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812.

    • Search Google Scholar
    • Export Citation
  • Williams, L. N., S. Lee, and S. Son, 2007: Dynamics of the Southern Hemisphere spiral jet. J. Atmos. Sci., 64, 548563.

  • Yuan, X., and C. Li, 2008: Climate modes in southern high latitudes and their impacts on Antarctic sea ice. J. Geophys. Res., 113, C06S91, doi:10.1029/2006JC004067.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., and D. G. Martinson, 2000: Antarctic sea ice extent variability and its global connectivity. J. Climate, 13, 16971717.

  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2002 584 72
PDF Downloads 1085 188 13