• Alexandrov, T., S. Bianconcini, E. B. Dagum, P. Maass and T. S. McElroy, 2008: A review of some modern approaches to the problem of trend extraction. Research Rep. Series (Statistics #2008-3), Statistical Research Division, U.S. Census Bureau, 32 pp.

  • Andreas, E. L, and G. Trevino, 1997: Using wavelets to detect trends. J. Atmos. Oceanic Technol., 14, 554564.

  • Barbosa, S. M., 2011: Testing for deterministic trends in global sea surface temperature. J. Climate, 24, 25162522.

  • Beran, J., 1994: Statistics for Long Memory Processes. Chapman & Hall/CRC, 315 pp.

  • Czaja, A., A. W. Robertson, and T. Huck, 2003: The role of Atlantic ocean-atmosphere coupling in affecting North Atlantic Oscillation variability. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 147–172.

  • Diggle, P. J., 1990: Time Series. Oxford Science Publications, 257 pp.

  • Draper, N. R., and H. Smith, 1998: Applied Regression Analysis. Wiley Interscience, 706 pp.

  • Fatichi, S., S. M. Barbosa, E. Caporali, and M. E. Silva, 2009: Deterministic versus stochastic trends: Detection and challenges. J. Geophys. Res., 114, D18121, doi:10.1029/2009JD011960.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2000: The timescale, power spectra, and climate noise properties of teleconnection patterns. J. Climate, 13, 44304440.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2002: The recent trend and variance increase of the annular mode. J. Climate, 15, 8894.

  • Franzke, C., 2009: Multi-scale analysis of teleconnection indices: Climate noise and nonlinear trends. Nonlinear Processes Geophys., 16, 6576.

    • Search Google Scholar
    • Export Citation
  • Franzke, C., 2010: Long-range dependence and climate noise characteristics of Antarctic temperature data. J. Climate, 23, 60746081.

  • Franzke, C., and T. Woollings, 2011: On the persistence and predictability properties of North Atlantic variability. J. Climate, 24, 466472.

    • Search Google Scholar
    • Export Citation
  • Franzke, C., T. Graves, N. W. Watkins, R. Gramacy, and C. Hughes, 2012: Robustness of estimators of long-range dependence and self-similarity under non-Gaussianity. Philos. Trans. Roy. Soc. A., 370, 12501267.

    • Search Google Scholar
    • Export Citation
  • Geweke, J., and S. Porter-Hudak, 1983: The estimation and application of long memory time series models. J. Time Ser. Anal., 4, 221238.

    • Search Google Scholar
    • Export Citation
  • Gil-Alana, L. A., 2005: Statistical modeling of the temperatures in the Northern Hemisphere using fractional integration techniques. J. Climate, 18, 53575369.

    • Search Google Scholar
    • Export Citation
  • Granger, C. W. J., 1980: Long memory relationship and the aggregation of dynamic models. J. Econ., 14, 227238.

  • Hawkins, E., and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90,10951107.

    • Search Google Scholar
    • Export Citation
  • Holland, P. W., and R. E. Welsch, 1977: Robust regression using iteratively reweighted least-squares. Commun. Stat. Theory Methods, 6, 813827.

    • Search Google Scholar
    • Export Citation
  • Hosking, J. R. M., 1981: Fractional differencing. Biometrika, 68, 165176.

  • Huang, N. E., and Z. Wu, 2008: A review on Hilbert-Huang Transform: Method and its applications to geophysical studies. Rev. Geophys., 46, RG2006, doi:10.1029/2007RG000228.

    • Search Google Scholar
    • Export Citation
  • Huang, N. E., and Coauthors, 1998: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Roy. Soc. London, A454, 903995.

    • Search Google Scholar
    • Export Citation
  • Hurvich, C. M., and R. S. Deo, 1999: Plug-in selection of the number of frequencies in regression estimates of the memory parameter of a long-memory time series. J. Time Ser. Anal., 20, 331341.

    • Search Google Scholar
    • Export Citation
  • Huybers, P., and W. Curry, 2006: Links between annual, Milankovitch and continuum temperature variability. Nature, 441, 329332, doi:10.1038/nature04745.

    • Search Google Scholar
    • Export Citation
  • Koscielny-Bunde, E., A. Bunde, S. Havlin, H. Eduardo Roman, Y. Goldreich, and H.-J. Schellnhuber, 1998: Indication of a universal persistence law governing atmospheric variability. Phys. Rev. Lett., 81, 729732.

    • Search Google Scholar
    • Export Citation
  • Leith, C. E., 1973: The standard error of time-average estimates of climatic means. J. Appl. Meteor., 12, 10661069.

  • Madden, R. A., 1976: Estimates of the natural variability of time-averaged sea-level pressure. Mon. Wea. Rev., 104, 942952.

  • Majda, A. J., C. Franzke, and B. Khouider, 2008: An applied mathematics perspective on stochastic modelling for climate. Philos. Trans. Roy. Soc., A366, 24272453, doi:10.1098/rsta.2008.0012.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., C. Franzke, and D. Crommelin, 2009: Normal forms for reduced stochastic climate models. Proc. Natl. Acad. Sci. USA, 106, 36493653, doi:10.1073/pnas.0900173106.

    • Search Google Scholar
    • Export Citation
  • Mallat, S., 1999: A Wavelet Tour of Signal Processing. 2nd ed. Academic Press, 637 pp.

  • Moberg, A., H. Bergström, J. Ruiz Krigsman, and O. Svanered, 2002: Daily air temperature and pressure series for Stockholm (1756–1998). Climatic Change, 53, 171212.

    • Search Google Scholar
    • Export Citation
  • Moberg, A., H. Alexandersson, H. Bergström, and P. D. Jones, 2003: Were southern Swedish summer temperatures before 1860 as warm as measured? Int. J. Climatol., 23, 14951521.

    • Search Google Scholar
    • Export Citation
  • Parker, D. E., T. P. Legg, and C. K. Folland, 1992: A new daily central England temperature series, 1772–1991. Int. J. Climatol., 12, 317342, doi:10.1002/JOC.3370120402.

    • Search Google Scholar
    • Export Citation
  • Percival, D. B., J. E. Overland, and H. O. Mofjeld, 2001: Interpretation of North Pacific variability as a short- and long-memory process. J. Climate, 14, 45454559.

    • Search Google Scholar
    • Export Citation
  • Qian, C., C. Fu, Z. Wu, and Z. Yan, 2009: On the secular change of spring onset at Stockholm. Geophys. Res. Lett., 36, L12706, doi:10.1029/2009GL038617.

    • Search Google Scholar
    • Export Citation
  • Qian, C., C. Fu, and Z. Wu, 2011: Changes in the amplitude of the temperature annual cycle in China and their implication for climate change research. J. Climate, 24, 52925302.

    • Search Google Scholar
    • Export Citation
  • Rilling, G., P. Flandrin, and P. Goncalves, 2003: On empirical mode decomposition and its algorithms. Proc. Workshop on Nonlinear Signal and Image Processing NSIP-03, Grado, Italy, IEEE-EURASIP, 8–11.

  • Robinson, P. M., 2003: Long-memory time series. Time Series with Long Memory, P. M. Robinson, Ed., Oxford University Press, 4–32.

  • Rybski, D., A. Bunde, S. Havlin, and H. von Storch, 2006: Long-term persistence in climate and the detection problem. Geophys. Res. Lett., 33, L06718, doi:10.1029/2005GL025591.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., T. M. L. Wigley, J. S. Boyle, D. J. Gaffen, J. J. Hnilo, D. Nychka, D. E. Parker, and K. E. Taylor, 2000: Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J. Geophys. Res., 105, 73377356.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2008: Consistency of modelled and observed temperature trends in the tropical troposphere. Int. J. Climatol., 28, 17031722.

    • Search Google Scholar
    • Export Citation
  • Stephenson, D. B., V. Pavan, and R. Bojariu, 2000: Is the North Atlantic Oscillation a random walk? Int. J. Climatol., 20, 118.

  • Stoev, S., and M. S. Taqqu, 2004: Simulation methods for linear fractional stable motion and FARIMA using the Fast Fourier Transform. Fractals, 12, 95121, doi:10.1142/S0218348X04002379.

    • Search Google Scholar
    • Export Citation
  • Theiler, J., S. Eubank, A. Longtin, B. Galdrikian, and J. Doyne Farmer, 1992: Testing for nonlinearity in time series: The method of surrogate data. Physica D, 58, 7794.

    • Search Google Scholar
    • Export Citation
  • Thomas, E. R., P. F. Dennis, T. J. Bracegirdle, and C. Franzke, 2009: Ice core evidence for significant 100-year regional warming on the Antarctic Peninsula. Geophys. Res. Lett., 36, L20704, doi:10.1029/2009GL040104.

    • Search Google Scholar
    • Export Citation
  • Torrence, C., and G. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 6178.

  • Turner, J., and Coauthors, 2004: The SCAR READER Project: Toward a high-quality database of mean Antarctic meteorological observations. J. Climate, 17, 28902898.

    • Search Google Scholar
    • Export Citation
  • Turner, J., and Coauthors, 2005: Antarctic climate change during the last 50 years. Int. J. Climatol., 25, 279294.

  • von Storch, H., and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

  • Vyushin, D. I., and P. J. Kushner, 2009: Power-law and long-memory characteristics of the atmospheric general circulation. J. Climate, 22, 28902904.

    • Search Google Scholar
    • Export Citation
  • Vyushin, D. I., and P. J. Kushner, 2012: Modelling and understanding persistence of natural climate variability. J. Geophys. Res., in press.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., and N. E. Huang, 2009: Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal., 1, 141.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., N. E. Huang, S. R. Long, and C. K. Peng, 2007: On the trend, detrending, and variability of nonlinear and nonstationary time series. Proc. Natl. Acad. Sci. USA, 104, 14 88914 894.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., N. E. Huang, J. M. Wallace, B. V. Smoliak, and X. Chen, 2011: On the time-varying trend in global-mean surface temperature. Climate Dyn., 37, 759773.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 465 171 25
PDF Downloads 339 124 14

Nonlinear Trends, Long-Range Dependence, and Climate Noise Properties of Surface Temperature

View More View Less
  • 1 British Antarctic Survey, Cambridge, United Kingdom
Restricted access

Abstract

This study investigates the significance of trends of four temperature time series—Central England Temperature (CET), Stockholm, Faraday-Vernadsky, and Alert. First the robustness and accuracy of various trend detection methods are examined: ordinary least squares, robust and generalized linear model regression, Ensemble Empirical Mode Decomposition (EEMD), and wavelets. It is found in tests with surrogate data that these trend detection methods are robust for nonlinear trends, superposed autocorrelated fluctuations, and non-Gaussian fluctuations. An analysis of the four temperature time series reveals evidence of long-range dependence (LRD) and nonlinear warming trends. The significance of these trends is tested against climate noise. Three different methods are used to generate climate noise: (i) a short-range-dependent autoregressive process of first order [AR(1)], (ii) an LRD model, and (iii) phase scrambling. It is found that the ability to distinguish the observed warming trend from stochastic trends depends on the model representing the background climate variability. Strong evidence is found of a significant warming trend at Faraday-Vernadsky that cannot be explained by any of the three null models. The authors find moderate evidence of warming trends for the Stockholm and CET time series that are significant against AR(1) and phase scrambling but not the LRD model. This suggests that the degree of significance of climate trends depends on the null model used to represent intrinsic climate variability. This study highlights that in statistical trend tests, more than just one simple null model of intrinsic climate variability should be used. This allows one to better gauge the degree of confidence to have in the significance of trends.

Corresponding author address: Dr. C. Franzke, British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom. E-mail: chan1@bas.ac.uk

Abstract

This study investigates the significance of trends of four temperature time series—Central England Temperature (CET), Stockholm, Faraday-Vernadsky, and Alert. First the robustness and accuracy of various trend detection methods are examined: ordinary least squares, robust and generalized linear model regression, Ensemble Empirical Mode Decomposition (EEMD), and wavelets. It is found in tests with surrogate data that these trend detection methods are robust for nonlinear trends, superposed autocorrelated fluctuations, and non-Gaussian fluctuations. An analysis of the four temperature time series reveals evidence of long-range dependence (LRD) and nonlinear warming trends. The significance of these trends is tested against climate noise. Three different methods are used to generate climate noise: (i) a short-range-dependent autoregressive process of first order [AR(1)], (ii) an LRD model, and (iii) phase scrambling. It is found that the ability to distinguish the observed warming trend from stochastic trends depends on the model representing the background climate variability. Strong evidence is found of a significant warming trend at Faraday-Vernadsky that cannot be explained by any of the three null models. The authors find moderate evidence of warming trends for the Stockholm and CET time series that are significant against AR(1) and phase scrambling but not the LRD model. This suggests that the degree of significance of climate trends depends on the null model used to represent intrinsic climate variability. This study highlights that in statistical trend tests, more than just one simple null model of intrinsic climate variability should be used. This allows one to better gauge the degree of confidence to have in the significance of trends.

Corresponding author address: Dr. C. Franzke, British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom. E-mail: chan1@bas.ac.uk
Save