Twenty-First-Century Multimodel Subtropical Precipitation Declines Are Mostly Midlatitude Shifts

Jack Scheff Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Jack Scheff in
Current site
Google Scholar
PubMed
Close
and
Dargan Frierson Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Dargan Frierson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Declines in subtropical precipitation are a robust response to modeled twenty-first-century global warming. Two suggested mechanisms are the “dry-get-drier” intensification of existing subtropical dry zones due to the thermodynamic increase in vapor transport and the poleward expansion of these same dry zones due to poleward shifts in the modeled general circulation. Here, subtropical drying in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report multimodel archive is compared to each of these two mechanisms. Each model’s particular, biased, and seasonally and zonally varying mean state is considered relative to the location of that model’s predicted changes, and these relationships are recorded in a common framework that can be compared across models.

The models have a strong tendency to reduce precipitation along the subtropical flanks of their existing midlatitude cyclonic precipitation belts. This broad result agrees with the poleward expansion mechanism and with a poleward storm-track shift in particular. In contrast, the models have no clear tendency to reduce precipitation in the central nor equatorward portions of their subtropical dry zones, implying that the thermodynamic mechanism is broadly unimportant for the precipitation reductions. This is unlike the response of precipitation minus evaporation, which robustly declines in large portions of these regions, especially over the oceans.

The models also tend to increase precipitation in their wet deep tropical areas, but this is not as robust as the above reduction in the subtropical midlatitudes. High-latitude precipitation increases are the most robust precipitation changes of all in this framework.

Corresponding author address: Jack Scheff, Department of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195-1640. E-mail: jscheff@u.washington.edu

Abstract

Declines in subtropical precipitation are a robust response to modeled twenty-first-century global warming. Two suggested mechanisms are the “dry-get-drier” intensification of existing subtropical dry zones due to the thermodynamic increase in vapor transport and the poleward expansion of these same dry zones due to poleward shifts in the modeled general circulation. Here, subtropical drying in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report multimodel archive is compared to each of these two mechanisms. Each model’s particular, biased, and seasonally and zonally varying mean state is considered relative to the location of that model’s predicted changes, and these relationships are recorded in a common framework that can be compared across models.

The models have a strong tendency to reduce precipitation along the subtropical flanks of their existing midlatitude cyclonic precipitation belts. This broad result agrees with the poleward expansion mechanism and with a poleward storm-track shift in particular. In contrast, the models have no clear tendency to reduce precipitation in the central nor equatorward portions of their subtropical dry zones, implying that the thermodynamic mechanism is broadly unimportant for the precipitation reductions. This is unlike the response of precipitation minus evaporation, which robustly declines in large portions of these regions, especially over the oceans.

The models also tend to increase precipitation in their wet deep tropical areas, but this is not as robust as the above reduction in the subtropical midlatitudes. High-latitude precipitation increases are the most robust precipitation changes of all in this framework.

Corresponding author address: Jack Scheff, Department of Atmospheric Sciences, University of Washington, Box 351640, Seattle, WA 98195-1640. E-mail: jscheff@u.washington.edu
Save
  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in the hydrological cycle. Nature, 419, 224228.

  • Archer, C. L., and K. Caldeira, 2008: Historical trends in the jet streams. Geophys. Res. Lett., 35, L08803, doi:10.1029/2008GL033614.

  • Bengtsson, L., K. I. Hodges, and E. Roeckner, 2006: Storm tracks and climate change. J. Climate, 19, 35183543.

  • Betts, A. K., 1998: Climate–convection feedbacks: Some further issues. Climatic Change, 39, 3538.

  • Boer, G. J., 1993: Climate change and the regulation of the surface moisture and energy budgets. Climate Dyn., 8, 225239.

  • Butler, A. H., D. W. J. Thompson, and T. Birner, 2011: Isentropic slopes, down-gradient eddy fluxes, and the extratropical atmospheric circulation response to tropical tropospheric heating. J. Atmos. Sci., 68, 22922305.

    • Search Google Scholar
    • Export Citation
  • Chen, G., J. Lu, and D. M. W. Frierson, 2008: Phase speed spectra and the latitude of surface westerlies: Interannual variability and global warming trend. J. Climate, 21, 59425959.

    • Search Google Scholar
    • Export Citation
  • Fischer-Bruns, I., H. von Storch, J. F. Gonzalez-Rouco, and E. Zorita, 2005: Modelling the variability of midlatitude storm activity on decadal to century time scales. Climate Dyn., 25, 461476.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., J. Lu, and G. Chen, 2007: Width of the Hadley cell in simple and comprehensive general circulation models. Geophys. Res. Lett., 34, L18804, doi:10.1029/2007GL031115.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., and P. Lin, 2011: Poleward shift of subtropical jets inferred from satellite-observed lower-stratospheric temperatures. J. Climate, 24, 55975603.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., C. M. Johanson, J. M. Wallace, and T. Reichler, 2006: Enhanced mid-latitude tropospheric warming in satellite measurements. Science, 312, 1179.

    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., 2003: Extratropical southern hemisphere cyclones: Harbingers of climate change? J. Climate, 16, 28022805.

  • Held, I., and B. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699.

  • Hu, Y., and Q. Fu, 2007: Observed poleward expansion of the Hadley circulation since 1979. Atmos. Chem. Phys., 7, 52295236.

  • Kidston, J., G. K. Vallis, S. M. Dean, and J. Renwick, 2011: Can the increase in the eddy length scale under global warming cause the poleward shift of the jet streams? J. Climate, 24, 37643780.

    • Search Google Scholar
    • Export Citation
  • Lin, J. L., 2007: Interdecadal variability of ENSO in 21 IPCC AR4 coupled GCMs. Geophys. Res. Lett., 34, L12702, 10.1029/2006GL028937.

  • Livezey, R. E., and W. Y. Chen, 1983: Statistical field significance and its determination by Monte Carlo techniques. Mon. Wea. Rev., 111, 4659.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and E. T. DeWeaver, 2007: Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J. Geophys. Res., 112, D10119, doi:10.1029/2006JD008087.

    • Search Google Scholar
    • Export Citation
  • Lu, J., G. A. Vecchi, and T. J. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34, L06805, doi:10.1029/2006GL028443.

    • Search Google Scholar
    • Export Citation
  • Lu, J., G. Chen, and D. M. W. Frierson, 2010: The position of the midlatitude storm track and eddy-driven westerlies in aquaplanet AGCMs. J. Atmos. Sci., 67, 39844000.

    • Search Google Scholar
    • Export Citation
  • Ma, J., S.-P. Xie, and Y. Kosaka, 2012: Mechanisms for tropical tropospheric circulation change in response to global warming. J. Climate, 25, 29792994.

    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., 2003: Trends in the southern annular mode from observations and reanalyses. J. Climate, 16, 41344143.

  • McCabe, G. J., M. P. Clark, and M. C. Serreze, 2000: Trends in northern hemisphere surface cyclone frequency and intensity. J. Climate, 14, 27632768.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. Stouffer, and K. E. Taylor, 2007a: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007b: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–845.

  • Neelin, J. D., M. Munnich, H. Su, J. E. Meyerson, and C. E. Holloway, 2006: Tropical drying trends in global warming models and observations. Proc. Natl. Acad. Sci. USA, 103, 61106115.

    • Search Google Scholar
    • Export Citation
  • Previdi, M., and B. G. Liepert, 2007: Annular modes and Hadley cell expansion under global warming. Geophys. Res. Lett., 34, L22701, doi:10.1029/2007GL031243.

    • Search Google Scholar
    • Export Citation
  • Riviere, G., 2011: A dynamical interpretation of the poleward shift of the jet streams in global warming scenarios. J. Atmos. Sci., 68, 12531272.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., T. M. L. Wigley, J. S. Boyle, D. J. Gaffen, J. J. Hnilo, D. Nychka, D. E. Parker, and K. E. Taylor, 2000: Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J. Geophys. Res., 105 (D6), 73377356.

    • Search Google Scholar
    • Export Citation
  • Scheff, J., 2011: CMIP3 21st century robust subtropical precipitation declines are mostly mid-latitude shifts. M.S. thesis, Dept. of Atmospheric Sciences, University of Washington, 66 pp. [Available online at http://www.atmos.washington.edu/~jack/Thesis.pdf.]

  • Seager, R., and Coauthors, 2007: Model projections of an imminent transition to a more arid climate in southwestern North America. Science, 316, 11811184.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, and G. A. Vecchi, 2010: Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Climate, 23, 46514668.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., and W. J. Randel, 2007: Recent widening of the tropical belt: Evidence from tropopause observations. J. Geophys. Res., 112, D20113, doi:10.1029/2007JD008861.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., and Coauthors, 2007: Technical summary. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 19–91.

  • Takahashi, S., 2004: Algorithms for extracting surface topology from digital elevation models. Topological Data Structures for Surfaces: An Introduction to Geographical Information Science, S. Rana, Ed., Wiley, 31–51.

  • Thompson, D. W. J., J. M. Wallace, and G. C. Hegerl, 2000: Annular modes in the extratropical circulation. Part II: Trends. J. Climate, 13, 10181036.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1998: Atmospheric moisture residence times and cycling: Implications for rainfall rates with climate change. Climatic Change, 39, 667694.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, U., J. G. Pinto, H. Kupfer, G. C. Leckebusch, T. Spangehl, and M. Reyers, 2008: Changing northern hemisphere storm tracks in an ensemble of IPCC climate change simulations. J. Climate, 21, 16691679.

    • Search Google Scholar
    • Export Citation
  • Wetherald, R. T., and S. Manabe, 2002: Simulation of hydrologic changes associated with global warming. J. Geophys. Res., 107, 4379, doi:10.1029/2001JD001195.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 627 pp.

  • Yin, J., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701, doi:10.1029/2005GL023684.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1189 510 89
PDF Downloads 535 102 11