• Arzel, O., M. H. England, and O. A. Saenko, 2011: The impact of wind stress feedback on the stability of the Atlantic meridional overturning circulation. J. Climate, 24 , 19651984.

    • Search Google Scholar
    • Export Citation
  • Bryan, F., 1986: High-latitude salinity effects and interhemispheric thermohaline circulations. Nature, 323 , 301304.

  • Cessi, P., and W. R. Young, 1992: Multiple equilibria in two-dimensional thermohaline circulation. J. Fluid Mech., 241, 291309.

  • Chang, P., L. Ji, and H. Li, 1997: A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air-sea interactions. Nature, 385 , 516518.

    • Search Google Scholar
    • Export Citation
  • Cimatoribus, A. A., S. S. Drijfhout, and H. A. Dijkstra, 2012: A global hybrid coupled model based on atmosphere-SST feedbacks. Climate Dyn., 38 , 745760.

    • Search Google Scholar
    • Export Citation
  • Clark, P. U., N. G. Pisias, T. F. Stocker, and A. J. Weaver, 2002: The role of the thermohaline circulation in abrupt climate change. Nature, 415 , 863869.

    • Search Google Scholar
    • Export Citation
  • den Toom, M., H. A. Dijkstra, and F. W. Wubs, 2011: Spurious multiple equilibria introduced by convective adjustment. Ocean Modell., 38 (1–2), 126137.

    • Search Google Scholar
    • Export Citation
  • Dijkstra, H. A., 2005: The thermohaline circulation. Nonlinear Physical Oceanography: A Dynamical Systems Approach to the Large Scale Ocean Circulation and El Niño, H. A. Dijkstra, Ed., Springer, 267–368.

  • Dijkstra, H. A., 2008: Scaling of the Atlantic meridional overturning circulation in a global ocean model. Tellus, 60A , 749760.

  • Dijkstra, H. A., and W. Weijer, 2005: Stability of the global ocean circulation: Basic bifurcation diagrams. J. Phys. Oceanogr., 35 , 933948.

    • Search Google Scholar
    • Export Citation
  • Dijkstra, H. A., L. Te Raa, and W. Weijer, 2004: A systematic approach to determine thresholds of the ocean’s thermohaline circulation. Tellus, 56A , 362370.

    • Search Google Scholar
    • Export Citation
  • Dixon, K. W., T. L. Delworth, M. J. Spelman, and R. J. Stouffer, 1999: The influence of transient surface fluxes on North Atlantic overturning in a coupled GCM climate change experiment. Geophys. Res. Lett., 26 , 27492752.

    • Search Google Scholar
    • Export Citation
  • Drijfhout, S. S., S. L. Weber, and E. van der Swaluw, 2011: The stability of the MOC as diagnosed from model projections for pre-industrial, present and future climates. Climate Dyn., 37 , 15751586.

    • Search Google Scholar
    • Export Citation
  • Ganopolski, A., and S. Rahmstorf, 2001: Rapid changes of glacial climate simulated in a coupled climate model. Nature, 409 , 153158.

  • Goosse, H., and T. Fichefet, 1999: Importance of ice-ocean interactions for the global ocean circulation: A model study. J. Geophys. Res., 104 (C10), 23 33723 355.

    • Search Google Scholar
    • Export Citation
  • Hawkins, E., R. S. Smith, L. C. Allison, J. M. Gregory, T. J. Woollings, H. Pohlmann, and B. de Cuevas, 2011: Bistability of the Atlantic overturning circulation in a global climate model and links to ocean freshwater transport. Geophys. Res. Lett., 38, L10605, doi:10.1029/2011GL047208.

    • Search Google Scholar
    • Export Citation
  • Hofmann, M., and S. Rahmstorf, 2009: On the stability of the Atlantic meridional overturning circulation. Proc. Natl. Acad. Sci., 106, 20 58420 589.

    • Search Google Scholar
    • Export Citation
  • Huisman, S. E., M. den Toom, H. A. Dijkstra, and S. Drijfhout, 2010: An indicator of the multiple equilibria regime of the Atlantic meridional overturning circulation. J. Phys. Oceanogr., 40 , 551567.

    • Search Google Scholar
    • Export Citation
  • Keller, H. B., 1977: Numerical solution of bifurcation and nonlinear eigenvalue problems. Applications of Bifurcation Theory, P. H. Rabinowitz, Ed., Academic Press, 359–384.

  • Latif, M., E. Roeckner, U. Mikolajewicz, and R. Voss, 2000: Tropical stabilization of the thermohaline circulation in a greenhouse warming simulation. J. Climate, 13 , 18091813.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., R. Burgett, and T. P. Boyer, 1994: Salinity. Vol. 3, World Ocean Atlas 1994, NOAA Atlas NESDIS 3, 99 pp.

  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–846.

  • Rahmstorf, S., and Coauthors, 2005: Thermohaline circulation hysteresis: A model intercomparison. Geophys. Res. Lett., 32, L23605, doi:10.1029/2005GL023655.

    • Search Google Scholar
    • Export Citation
  • Schmittner, A., M. Latif, and B. Schneider, 2005: Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations. Geophys. Res. Lett., 32, L23710, doi:10.1029/2005GL024368.

    • Search Google Scholar
    • Export Citation
  • Severijns, C. A., and W. Hazeleger, 2009: The efficient global primitive equation climate model SPEEDO. Geosci. Model Dev. Discuss., 2, 11151155.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1961: Thermohaline convection with two stable regimes of flow. Tellus, 13, 224230.

  • Stouffer, R. J., and Coauthors, 2006: Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Climate, 19 , 13651387.

    • Search Google Scholar
    • Export Citation
  • Thual, O., and J. C. McWilliams, 1992: The catastrophe structure of thermohaline convection in a two-dimensional fluid model and a comparison with low-order box models. Geophys. Astrophys. Fluid Dyn., 64 , 6795.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. G. Olson, and W. G. Large, 1989: A global ocean wind stress climatology based on ECMWF analyses. National Center for Atmospheric Research Tech. Rep. NCAR/TN−338+STR, Boulder, CO, 93 pp.

  • Tziperman, E., and H. Gildor, 2002: The stabilization of the thermohaline circulation by the temperature–precipitation feedback. J. Phys. Oceanogr., 32 , 27072714.

    • Search Google Scholar
    • Export Citation
  • Vellinga, M., 1998: Multiple equilibria in ocean models as a side effect of convective adjustment. J. Phys. Oceanogr., 28 , 621633.

  • Vellinga, M., and R. A. Wood, 2002: Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Climatic Change, 54 , 251267.

    • Search Google Scholar
    • Export Citation
  • Vellinga, M., and P. Wu, 2004: Low-latitude freshwater influence on centennial variability of the Atlantic thermohaline circulation. J. Climate, 17 , 44984511.

    • Search Google Scholar
    • Export Citation
  • Vellinga, M., R. A. Wood, and J. M. Gregory, 2002: Processes governing the recovery of a perturbed thermohaline circulation in HadCM3. J. Climate, 15 , 764780.

    • Search Google Scholar
    • Export Citation
  • Weijer, W., and H. A. Dijkstra, 2001: A bifurcation study of the three-dimensional thermohaline ocean circulation: The double hemispheric case. J. Mar. Res., 59, 599631.

    • Search Google Scholar
    • Export Citation
  • Weijer, W., H. A. Dijkstra, H. Oksuzoglu, F. W. Wubs, and A. C. de Niet, 2003: A fully-implicit model of the global ocean circulation. J. Comput. Phys., 192 , 452470.

    • Search Google Scholar
    • Export Citation
  • Wubs, F. W., A. C. de Niet, and H. A. Dijkstra, 2006: The performance of implicit ocean models on b- and c-grids. J. Comput. Phys., 211 , 210228.

    • Search Google Scholar
    • Export Citation
  • Yin, J., M. E. Schlesinger, N. G. Andronova, S. Malyshev, and B. Li, 2006: Is a shutdown of the thermohaline circulation irreversible? J. Geophys. Res., 111, D12104, doi:10.1029/2005JD006562.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., V. Ramanathan, and M. J. McPhaden, 1995: Convection–evaporation feedback in the equatorial Pacific. J. Climate, 8 , 30403051.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 72 37 3
PDF Downloads 36 22 2

Effect of Atmospheric Feedbacks on the Stability of the Atlantic Meridional Overturning Circulation

View More View Less
  • 1 Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands
  • | 2 Royal Netherlands Meteorological Institute, De Bilt, Netherlands
Restricted access

Abstract

The impact of atmospheric feedbacks on the multiple equilibria (ME) regime of the Atlantic meridional overturning circulation (MOC) is investigated using a fully implicit hybrid coupled model (HCM). The HCM consists of a global ocean model coupled to an empirical atmosphere model that is based on linear regressions of the heat, net evaporative, and momentum fluxes generated by a fully coupled climate model onto local as well as Northern Hemisphere averaged sea surface temperatures. Using numerical continuation techniques, bifurcation diagrams are constructed for the HCM with the strength of an anomalous freshwater flux as the bifurcation parameter, which allows for an efficient first-order estimation of the effect of interactive surface fluxes on the MOC stability. The different components of the atmospheric fluxes are first considered individually and then combined. Heat feedbacks act to destabilize the present-day state of the MOC and to stabilize the collapsed state, thus leaving the size of the ME regime almost unaffected. In contrast, interactive freshwater fluxes cause a destabilization of both the present-day and collapsed states of the MOC. Wind feedbacks are found to have a minor impact. The joint effect of the three interactive fluxes is to narrow the range of ME. The shift of the saddle-node bifurcation that terminates the present-day state of the ocean is further investigated by adjoint sensitivity analysis of the overturning rate to surface fluxes. It is found that heat feedbacks primarily affect the MOC stability when they change the heat fluxes over the North Atlantic subpolar gyre, whereas interactive freshwater fluxes have an effect everywhere in the Atlantic basin.

Corresponding author address: Matthijs den Toom, Institute for Marine and Atmospheric Research Utrecht (IMAU), Dept. of Physics and Astronomy, Utrecht University, Princetonplein 5, 3584 CC Utrecht, Netherlands. E-mail: m.dentoom@uu.nl

Abstract

The impact of atmospheric feedbacks on the multiple equilibria (ME) regime of the Atlantic meridional overturning circulation (MOC) is investigated using a fully implicit hybrid coupled model (HCM). The HCM consists of a global ocean model coupled to an empirical atmosphere model that is based on linear regressions of the heat, net evaporative, and momentum fluxes generated by a fully coupled climate model onto local as well as Northern Hemisphere averaged sea surface temperatures. Using numerical continuation techniques, bifurcation diagrams are constructed for the HCM with the strength of an anomalous freshwater flux as the bifurcation parameter, which allows for an efficient first-order estimation of the effect of interactive surface fluxes on the MOC stability. The different components of the atmospheric fluxes are first considered individually and then combined. Heat feedbacks act to destabilize the present-day state of the MOC and to stabilize the collapsed state, thus leaving the size of the ME regime almost unaffected. In contrast, interactive freshwater fluxes cause a destabilization of both the present-day and collapsed states of the MOC. Wind feedbacks are found to have a minor impact. The joint effect of the three interactive fluxes is to narrow the range of ME. The shift of the saddle-node bifurcation that terminates the present-day state of the ocean is further investigated by adjoint sensitivity analysis of the overturning rate to surface fluxes. It is found that heat feedbacks primarily affect the MOC stability when they change the heat fluxes over the North Atlantic subpolar gyre, whereas interactive freshwater fluxes have an effect everywhere in the Atlantic basin.

Corresponding author address: Matthijs den Toom, Institute for Marine and Atmospheric Research Utrecht (IMAU), Dept. of Physics and Astronomy, Utrecht University, Princetonplein 5, 3584 CC Utrecht, Netherlands. E-mail: m.dentoom@uu.nl
Save