• Bender, M. A., T. R. Knutson, R. E. Tuleya, J. J. Sirutis, G. A. Vecchi, S. T. Gardner, and I. M. Held, 2010: Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science, 327, 454458.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. I. Hodges, M. Esch, N. Keenlyside, L. Kornblueh, J.-J. Luo, and T. Yamagata, 2007: How may tropical cyclones change in a warmer climate? Tellus, 59A, 539561.

    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 52, 233240.

  • Bister, M., and K. A. Emanuel, 2002: Low frequency variability of tropical cyclone potential intensity: 1. Interannual to interdecadal variability. J. Geophys. Res., 107, 4801, doi:10.1029/2001JD000776.

    • Search Google Scholar
    • Export Citation
  • Braconnot, P., and Coauthors, 2007a: Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum. Part 1: Experiments and large-scale features. Climate Past, 3, 261277.

    • Search Google Scholar
    • Export Citation
  • Braconnot, P., and Coauthors, 2007b: Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum. Part 2: Feedbacks with emphasis on the location of the ITCZ and mid- and high latitudes heat budget. Climate Past, 3, 279296.

    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., 2000: Tropical cooling at the Last Glacial Maximum: An atmosphere–mixed layer ocean model simulation. J. Climate, 13, 951976.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., and S. E. Zebiak, 2002: Improving the detection and tracking of tropical cyclones in atmospheric general circulation models. Wea. Forecasting, 17, 11521162.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., and A. H. Sobel, 2004: Formation of tropical storms in an atmospheric general circulation model. Tellus, 56A, 5667.

  • Camargo, S. J., A. H. Sobel, A. G. Barnston, and K. A. Emanuel, 2007: Tropical cyclone genesis potential index in climate models. Tellus, 59A, 428443.

    • Search Google Scholar
    • Export Citation
  • Cheung, K. F., L. J. Tang, J. P. Donnelly, E. M. Scileppi, K. B. Liu, X. Z. Mao, S. H. Houston, and R. J. Murnane, 2007: Numerical modeling and field evidence of coastal overwash in southern New England from Hurricane Bob and implications for paleotempestology. J. Geophys. Res., 112, F03024, doi:10.1029/2006JF000612.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 20762087.

  • Donnelly, J. P., 2005: Evidence of past intense tropical cyclones form backbarrier salt pond sediments: A case study from Isla de Culebrita, Puerto Rico, USA. J. Coast. Res., 42, 201210.

    • Search Google Scholar
    • Export Citation
  • Donnelly, J. P., and J. D. Woodruff, 2007: Intense hurricane activity over the past 5000 years controlled by El Niño and the West African monsoon. Nature, 447, 465468.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585604.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1989: The finite-amplitude nature of tropical cyclogenesis. J. Atmos. Sci., 46, 34313456.

  • Emanuel, K. A., 1995a: The behavior of a simple hurricane model using a convective scheme based on subcloud-layer entropy equilibrium. J. Atmos. Sci., 52, 39593968.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995b: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686688.

  • Emanuel, K. A., 2010: Tropical cyclone activity downscaled from NOAA-CIRES reanalysis, 1908-1958. J. Adv. Model. Earth Syst., 2, 12 pp., doi:10.3894/JAMES.2010.2.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and R. Rotunno, 1989: Polar lows as arctic hurricanes. Tellus, 41A, 117.

  • Emanuel, K. A., and D. S. Nolan, 2004: Tropical cyclone activity and the global climate system. Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 10A.2. [Available online at http://ams.confex.com/ams/26HURR/techprogram/paper_75463.htm.]

  • Emanuel, K. A., R. Sundararajan, and J. Williams, 2008: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89, 347367.

    • Search Google Scholar
    • Export Citation
  • Federov, A. V., C. M. Breierly, and K. Emanuel, 2010: Tropical cyclones and permanent El Niño in the early Pliocene epoch. Nature, 463, 10661070.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 22492269.

    • Search Google Scholar
    • Export Citation
  • Frappier, A., T. Knutson, K.-B. Liu, and K. Emanuel, 2007: Perspective: Coordinating paleoclimate research on tropical cyclones with hurricane-climate theory and modeling. Tellus, 59A, 529537.

    • Search Google Scholar
    • Export Citation
  • Galewsky, J., C. P. Stark, S. J. Dadson, C.-C. Wu, A. H. Sobel, and M.-J. Horng, 2006: Tropical cyclone triggering of sediment discharge in Taiwan. J. Geophys. Res., 111, F03014, doi:10.1029/2005JF000428.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700.

  • Gray, W. M., 1975: Tropical cyclone genesis. Atmospheric Science Paper 234, Colorado State University, Ft. Collins, CO, 121 pp.

  • Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 155–218.

  • Hayakawa, Y. S., and T. Oguchi, 2009: GIS analysis of fluvial knickzone distribution in Japanese mountain watersheds. Geomorphology, 111, 2737.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437470.

  • Knutson, T. R., J. J. Sirutis, S. T. Garner, G. A. Vecchi, and I. Held, 2008: Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions. Nat. Geosci., 1, 359364.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and Coauthors, 2010: Tropical cyclones and climate change. Nat. Geosci., 3, 157163.

  • Korty, R. L., and T. Schneider, 2007: A climatology of the tropospheric thermal stratification using saturation potential vorticity. J. Climate, 20, 59775991.

    • Search Google Scholar
    • Export Citation
  • Korty, R. L., K. A. Emanuel, and J. R. Scott, 2008: Tropical cyclone–induced upper-ocean mixing and climate: Application to equable climates. J. Climate, 21, 638654.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., 2007: Counting Atlantic tropical cyclones back to 1900. Eos, Trans. Amer. Geophys. Union, 88, 197208.

  • Landsea, C. W., B. A. Harper, K. Hoarau, and J. A. Knaff, 2006: Can we detect trends in extreme tropical cyclones? Science, 313, 452454.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and Coauthors, 2008: A reanalysis of the 1911–20 Atlantic hurricane database. J. Climate, 21, 21382168.

  • Lin, G. W., H. Chen, N. Hovius, M. J. Horng, S. Dadson, P. Meunier, and M. Lines, 2008: Effects of earthquake and cyclone sequencing on landsliding and fluvial sediment transfer in a mountain catchment. Earth Surf. Processes Landforms, 33, 13541373.

    • Search Google Scholar
    • Export Citation
  • Liu, K.-B., and M. L. Fearn, 1993: Lake-sediment record of late Holocene hurricane actvities from coastal Alabama. Geology, 21, 793796.

    • Search Google Scholar
    • Export Citation
  • Liu, K.-B., and M. L. Fearn, 2000: Reconstruction of prehistoric landfall frequencies of catastrophic hurricanes in northwestern Florida from lake sediment records. Quat. Res., 54, 238245.

    • Search Google Scholar
    • Export Citation
  • Marsden, A. T., G. A. T. Duller, J. P. Donnelly, H. M. Roberts, and A. G. Wintle, 2009: A chronology of hurricane landfalls at Little Sippewissett Marsh, Massachusetts, USA, using optical dating. Geophormology, 109, 3645.

    • Search Google Scholar
    • Export Citation
  • McGauley, M. G., and D. S. Nolan, 2011: Measuring environmental favorability for tropical cyclogenesis by statistical analysis of threshold parameters. J. Climate, 24, 59685997.

    • Search Google Scholar
    • Export Citation
  • Menkes, C. E., M. Lengaigne, P. Marchesiello, N. C. Jourdain, E. M. Vincent, J. Lefèvre, F. Chauvin, and J.-F. Royer, 2012: Comparison of tropical cyclogenesis indices on seasonal to interannual timescales. Climate Dyn., 38, 301–321, doi:10.1007/s00382-011-1126-x.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., 2011: Evaluating environmental favorability for tropical cyclone development with the method of point downscaling. J. Adv. Model. Earth Syst., 3, M08001, 28 pp.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and E. D. Rappin, 2008: Increased sensitivity of tropical cyclogenesis to wind shear in higher SST environments. Geophys. Res. Lett., 35, L14805, doi:10.1029/2008GL034147.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., E. D. Rappin, and K. A. Emanuel, 2007: Tropical cyclogenesis sensitivity to environmental parameters in radiative-convective equilibrium. Quart. J. Roy. Meteor. Soc., 133, 20852107.

    • Search Google Scholar
    • Export Citation
  • Nott, J., 2011: Tropical cyclones, global climate change and the role of quaternary studies. J. Quat. Sci., 26, 468473.

  • Otto-Bliesner, B., E. C. Brady, C. Gabriel, R. Tomas, S. Levis, and Z. Kothavala, 2006: Last Glacial Maximum and Holocene climate in CCSM3. J. Climate, 19, 25262544.

    • Search Google Scholar
    • Export Citation
  • Rappin, E. D., D. S. Nolan, and K. A. Emanuel, 2010: Thermodynamic control of tropical cyclogenesis in environments of radiative-convective equilibrium with shear. Quart. J. Roy. Meteor. Soc., 136, 19541971.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. A., and J. Turner, 2003: Polar Lows: Mesoscale Weather Systems in the Polar Regions. Cambridge University Press, 612 pp.

  • Royer, J.-F., F. Chauvin, B. Timbal, P. Araspin, and D. Grimal, 1998: A GCM study of the impact of greenhouse gas increase on the frequency of occurrence of tropical cyclones. Climatic Change, 38, 307343.

    • Search Google Scholar
    • Export Citation
  • Stark, C. P., and Coauthors, 2010: The climatic signature of incised river meanders. Science, 327, 14971501, doi:10.1126/science.1184406.

    • Search Google Scholar
    • Export Citation
  • Tang, B., 2010: Midlevel ventilation’s constraint on tropical cyclone intensity. Ph.D. thesis, Massachusetts Institute of Technology, 195 pp.

  • Tang, B., and K. A. Emanuel, 2010: Midlevel ventilation’s constraint on tropical cyclone intensity. J. Atmos. Sci., 67, 18171830.

  • Tippett, M. K., S. J. Camargo, and A. H. Sobel, 2011: A Poisson regression index for tropical cyclone genesis and the role of large-scale vorticity in genesis. J. Climate, 24, 23352357.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007a: Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450, 10661070.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007b: Increased tropical Atlantic wind shear in model projections of global warming. Geophys. Res. Lett., 34, L08702, doi:10.1029/2006GL028905.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and T. R. Knutson, 2008: On estimates of historical North Atlantic tropical cyclone activity. J. Climate, 21, 35803600.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and T. R. Knutson, 2011: Estimating annual numbers of Atlantic hurricanes missing from the HURDAT database (1878–1965) using ship track density. J. Climate, 24, 17361746.

    • Search Google Scholar
    • Export Citation
  • Watterson, I. G., J. L. Evans, and B. F. Ryan, 1995: Seasonal and interannual variability of tropical cyclogenesis: Diagnostics from large-scale fields. J. Climate, 8, 30523066.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., G. J. Holland, J. A. Curry, and H.-R. Chang, 2005: Changes in tropical cyclone number, duration and intensity in a warming environment. Science, 309, 18441846.

    • Search Google Scholar
    • Export Citation
  • Woodruff, J. D., J. P. Donnelly, K. Emanuel, and P. Lane, 2008: Assessing sedimentary records of paleohurricane activity using modeled hurricane climatology. Geochem. Geophys. Geosyst., 9, Q09V10, doi:10.1029/2008GC002043.

    • Search Google Scholar
    • Export Citation
  • Woodruff, J. D., J. P. Donnelly, and A. Okusu, 2009: Exploring typhoon variability over the mid-to-late Holocene: Evidence of extreme coastal flooding from Kamikoshiki, Japan. Quat. Sci. Rev., 28, 17741785.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., C. Deser, G. A. Vecchi, J. Ma, H. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966686.

    • Search Google Scholar
    • Export Citation
  • Xu, K., and K. A. Emanuel, 1989: Is the tropical atmosphere conditionally unstable? Mon. Wea. Rev., 117, 14711479.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 408 144 35
PDF Downloads 216 77 17

Tropical Cyclone Genesis Factors in Simulations of the Last Glacial Maximum

View More View Less
  • 1 Department of Atmospheric Sciences, Texas A&M University, College Station, Texas
  • | 2 Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York
  • | 3 Department of Earth Sciences, University of New Mexico, Albuquerque, New Mexico
Restricted access

Abstract

Large-scale environmental factors that favor tropical cyclogenesis are calculated and examined in simulations of the Last Glacial Maximum (LGM) from the Paleoclimate Modelling Intercomparison Project Phase 2 (PMIP2). Despite universally colder conditions at the LGM, values of tropical cyclone potential intensity, which both serves as an upper bound on thermodynamically achievable intensity and indicates regions supportive of the deep convection required, are broadly similar in magnitude to those in preindustrial era control simulation. Some regions, including large areas of the central and western North Pacific, feature higher potential intensities at the LGM than they do in the control runs, while other regions including much of the Atlantic and Indian Oceans are lower. Changes in potential intensity are strongly correlated with the degree of surface cooling during the LGM. Additionally, two thermodynamic parameters—one that measures midtropospheric entropy deficits relevant for tropical cyclogenesis and another related to the time required for genesis—are broadly more favorable in the LGM simulation than in the preindustrial era control. A genesis potential index yields higher values for the LGM in much of the western Pacific, a feature common to nearly all of the individual models examined.

Corresponding author address: Robert L. Korty, Department of Atmospheric Sciences, Texas A&M University, TAMU 3150, College Station, TX 77843-3150. E-mail: korty@tamu.edu

Abstract

Large-scale environmental factors that favor tropical cyclogenesis are calculated and examined in simulations of the Last Glacial Maximum (LGM) from the Paleoclimate Modelling Intercomparison Project Phase 2 (PMIP2). Despite universally colder conditions at the LGM, values of tropical cyclone potential intensity, which both serves as an upper bound on thermodynamically achievable intensity and indicates regions supportive of the deep convection required, are broadly similar in magnitude to those in preindustrial era control simulation. Some regions, including large areas of the central and western North Pacific, feature higher potential intensities at the LGM than they do in the control runs, while other regions including much of the Atlantic and Indian Oceans are lower. Changes in potential intensity are strongly correlated with the degree of surface cooling during the LGM. Additionally, two thermodynamic parameters—one that measures midtropospheric entropy deficits relevant for tropical cyclogenesis and another related to the time required for genesis—are broadly more favorable in the LGM simulation than in the preindustrial era control. A genesis potential index yields higher values for the LGM in much of the western Pacific, a feature common to nearly all of the individual models examined.

Corresponding author address: Robert L. Korty, Department of Atmospheric Sciences, Texas A&M University, TAMU 3150, College Station, TX 77843-3150. E-mail: korty@tamu.edu
Save