• Abbot, D. S., and E. Tziperman, 2008a: A high-latitude convective cloud feedback and equable climates. Quart. J. Roy. Meteor. Soc., 134, 165185.

    • Search Google Scholar
    • Export Citation
  • Abbot, D. S., and E. Tziperman, 2008b: Sea ice, high-latitude convection, and equable climates. Geophys. Res. Lett., 35, L03702, doi:10.1029/2007GL032286.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi:10.1029/2006JC003798.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 1999: Downward propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res., 104, 30 93730 946.

    • Search Google Scholar
    • Export Citation
  • Barron, E. J., W. H. Peterson, D. Pollard, and S. L. Thompson, 1993: Past climate and the role of ocean heat transport: Model simulations for the Cretaceous. Paleoceanography, 8, 785798.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and W. Ridgway, 1989: Climatic equilibrium of the atmospheric convective boundary layer over a tropical ocean. J. Atmos. Sci., 46, 26212641.

    • Search Google Scholar
    • Export Citation
  • Budyko, M. I., 1969: The effect of solar radiation variations on the climate of the earth. Tellus, 21, 611619.

  • Budyko, M. I., and Y. A. Izrael, 1991: Anthropogenic Climate Change. University of Arizona Press, 485 pp.

  • Ding, Q., E. J. Steig, D. S. Battisti, and M. Kuettel, 2011: Recent West Antarctica warming caused by central tropical Pacific warming. Nat. Geosci., 4, 398403, doi:10.1038/NGEO1129.

    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., 1990: Equable climate dynamics. J. Atmos. Sci., 47, 29862995.

  • Gray, W. M., J. D. Sheaffer, and J. A. Knafi, 1992: Influence of the stratospheric QBO on ENSO variability. J. Meteor. Soc. Japan, 70, 975994.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699.

  • Hoerling, M. P., J. W. Hurrell, and T. Xu, 2001: Tropical origins for recent North Atlantic climate change. Science, 292, 9092.

  • Hoffert, M. I., and C. Covey, 1992: Deriving global climate sensitivity from palaeoclimate reconstructions. Nature, 360, 573576.

  • Huang, H.-P., K. M. Weickmann, and C. J. Hsu, 2001: Trend in atmospheric angular momentum in a transient climate change simulation with greenhouse gas and aerosol forcing. J. Climate, 14, 15251534.

    • Search Google Scholar
    • Export Citation
  • Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern Pacific and central Pacific types of ENSO. J. Climate, 22, 615632.

  • Knutson, T. R., and S. Manabe, 1995: Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean–atmosphere model. J. Climate, 8, 21812199.

    • Search Google Scholar
    • Export Citation
  • Korty, R. L., K. A. Emanuel, and J. R. Scott, 2008: Tropical cyclone–induced upper-ocean mixing and climate: Application to equable climates. J. Climate, 21, 638654.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515.

    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., and D. E. Harrison, 2005a: On the definition of El Niño and associated seasonal average U.S. weather anomalies. Geophys. Res. Lett., 32, L13705, doi:10.1029/2005GL022738.

    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., and D. E. Harrison, 2005b: Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys. Res. Lett., 32, L16705, doi:10.1029/2005GL022860.

    • Search Google Scholar
    • Export Citation
  • Lee, S., 1999: Why are the climatological zonal mean winds easterly in the equatorial upper troposphere? J. Atmos. Sci., 56, 13531363.

    • Search Google Scholar
    • Export Citation
  • Lee, S., S. B. Feldstein, D. Pollard, and T. S. White, 2011a: Can planetary wave dynamics explain equable climates? J. Climate, 24, 23912404.

    • Search Google Scholar
    • Export Citation
  • Lee, S., T. Gong, N. Johnson, S. B. Feldstein, and D. Pollard, 2011b: on the possible link between tropical convection and the Northern Hemisphere Arctic surface air temperature change between 1958 and 2001. J. Climate, 24, 43504367.

    • Search Google Scholar
    • Export Citation
  • Lu, J., and M. Cai, 2010: Quantifying contributions to polar warming amplification in an idealized coupled general circulation model. Climate Dyn., 34, 669687.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708.

    • Search Google Scholar
    • Export Citation
  • Mayer, M., and L. Haimberger, 2012: Poleward atmospheric energy transports and their variability as evaluated from ECMWF reanalysis data. J. Climate, 25, 734752.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and W. M. Washington, 1996: El Niño-like climate change in a model with increased atmospheric CO2 concentration. Nature, 382, 5660.

    • Search Google Scholar
    • Export Citation
  • Saravanan, R., 1993: Equatorial superrotation and maintenance of the general circulation in two-level models. J. Atmos. Sci., 50, 12111227.

    • Search Google Scholar
    • Export Citation
  • Sassi, F., D. Kinnison, B. A. Boville, R. R. Garcia, and R. Roble, 2004: Effect of El Niño–Southern Oscillation on the dynamical, thermal, and chemical structure of the middle atmosphere. J. Geophys. Res., 109, D17108, doi:10.1029/2003JD004434.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 13341337.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Harnik, Y. Kushnir, W. Robinson, and J. Miller, 2003: Mechanisms of hemispherically symmetric climate variability. J. Climate, 16, 29602978.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, M. Ting, M. A. Cane, N. Harnik, and Y. Kushnir, 2010: Adjustment of the atmospheric circulation to tropical Pacific SST anomalies: Variability of transient eddy propagation in the Pacific–North America sector. Quart. J. Roy. Meteor. Soc., 136, 277296, doi:10.1002/qj.588.

    • Search Google Scholar
    • Export Citation
  • Sellers, W. D., 1969: A global climate model based on the energy balance of the earth-atmosphere system. J. Appl. Meteor., 8, 392400.

    • Search Google Scholar
    • Export Citation
  • Sewall, J. O., and L. C. Sloan, 2004: Arctic Ocean and reduced obliquity on early Paleogene climate. Geology, 32, 477480.

  • Trenberth, K. E., and J. T. Fasullo, 2010: Simulation of present-day and twenty-first-century energy budgets of the southern oceans. J. Climate, 23, 440454.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. M. Caron, D. P. Stepaniak, and S. Worley, 2002: Evolution of El Nino–Southern Oscillation and global atmospheric surface temperatures. J. Geophys. Res., 107, 4065, doi:10.1029/2000JD000298.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G., A. Clement, and B. Soden, 2008: Examining the tropical Pacific’s response to global warming. Eos, Trans. Amer. Geophys. Union, 89, 81, doi:10.1029/2008EO090002.

    • Search Google Scholar
    • Export Citation
  • Weng, H., K. Ashok, S. K. Behera, S. A. Rao, and T. Yamagata, 2007: Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Climate Dyn., 29, 113129, doi:10.1007/s00382-007-0234-0.

    • Search Google Scholar
    • Export Citation
  • Yoo, C., S. Feldstein, and S. Lee, 2011: Impact of the Madden-Julian oscillation trend on the Arctic amplification of surface air temperature during the 1979–2008 boreal winter. Geophys. Res. Lett., 38, L24804, doi:10.1029/2011GL049881.

    • Search Google Scholar
    • Export Citation
  • Yoo, C., S. Lee, and S. Feldstein, 2012a: The impact of the Madden-Julian oscillation trend on the Antarctic warming during the 1979–2008 austral winter. Atmos. Sci. Lett., doi:10.1002/asl.379, in press.

    • Search Google Scholar
    • Export Citation
  • Yoo, C., S. Lee, and S. Feldstein, 2012b: Mechanisms of Arctic surface air temperature change in response to the Madden–Julian oscillation. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., and D. L. Hartmann, 2012: Climate feedbacks and their implications for poleward energy flux changes in a warming climate. J. Climate, 25, 608624.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y.-C., and W. B. Rossow, 1997: Estimating meridional transports by the atmospheric and oceanic general circulations using boundary fluxes. J. Climate, 10, 23582373.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 770 363 18
PDF Downloads 418 249 16

Testing of the Tropically Excited Arctic Warming Mechanism (TEAM) with Traditional El Niño and La Niña

View More View Less
  • 1 Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania
Restricted access

Abstract

By analyzing El Niño and La Niña composites with 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) data, evidence is presented here that the surface air temperature of the Arctic winter (December–February) is anomalously warm during La Niña and cold during El Niño. Surface and top-of-the-atmosphere energy fluxes were used to calculate the composite zonal-mean poleward moist static energy transport. The result shows that the La Niña warming in the Arctic is associated with an increased poleward energy transport in the extratropics. The opposite characteristics are found for El Niño. Because the total tropical convective heating is more localized during La Niña than El Niño, these findings suggest that the Arctic surface air temperature anomalies associated with ENSO may be attributed to the tropically excited Arctic warming mechanism (TEAM). In the tropics, consistent with previous studies, the anomalous poleward energy transport is positive during El Niño and negative during La Niña. Given the debate over whether a warmer world would take on more El Niño–like or La Niña–like characteristics, the findings of this study underscore the need for further investigation of tropical influence on polar climate.

Corresponding author address: Sukyoung Lee, Department of Meteorology, The Pennsylvania State University, University Park, PA 16801. E-mail: sl@meteo.psu.edu

Abstract

By analyzing El Niño and La Niña composites with 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) data, evidence is presented here that the surface air temperature of the Arctic winter (December–February) is anomalously warm during La Niña and cold during El Niño. Surface and top-of-the-atmosphere energy fluxes were used to calculate the composite zonal-mean poleward moist static energy transport. The result shows that the La Niña warming in the Arctic is associated with an increased poleward energy transport in the extratropics. The opposite characteristics are found for El Niño. Because the total tropical convective heating is more localized during La Niña than El Niño, these findings suggest that the Arctic surface air temperature anomalies associated with ENSO may be attributed to the tropically excited Arctic warming mechanism (TEAM). In the tropics, consistent with previous studies, the anomalous poleward energy transport is positive during El Niño and negative during La Niña. Given the debate over whether a warmer world would take on more El Niño–like or La Niña–like characteristics, the findings of this study underscore the need for further investigation of tropical influence on polar climate.

Corresponding author address: Sukyoung Lee, Department of Meteorology, The Pennsylvania State University, University Park, PA 16801. E-mail: sl@meteo.psu.edu
Save