• Bal, S., , S. Schimanke, , T. Spangehl, , and U. Cubasch, 2011: On the robustness of the solar cycle signal in the Pacific region. Geophys. Res. Lett., 38, L14809, doi:10.1029/2011GL047964.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1966: A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus, 18, 820829.

    • Search Google Scholar
    • Export Citation
  • Cagnazzo, C., , E. Manzini, , M. A. Giorgetta, , P. M. D. Forster, , and J. J. Morcrette, 2007: Impact of an improved shortwave radiation scheme in the MAECHAM5 general circulation model. Atmos. Chem. Phys., 7, 25032515.

    • Search Google Scholar
    • Export Citation
  • Camp, C. D., , and K.-K. Tung, 2007: Surface warming by the solar cycle as revealed by the composite mean difference projection. Geophys. Res. Lett., 34, L14703, doi:10.1029/2007GL030207.

    • Search Google Scholar
    • Export Citation
  • Christoforou, P., , and S. Hameed, 1997: Solar cycle and the Pacific ‘centers of action.’ Geophys. Res. Lett., 24, 293296.

  • Cibot, C., , E. Maisonnave, , L. Terray, , and B. Dewitte, 2005: Mechanisms of tropical Pacific interannual-to-decadal variability in the ARPEGE/ORCA global coupled model. Climate Dyn., 24, 823842.

    • Search Google Scholar
    • Export Citation
  • Clement, A. C., , R. Seager, , M. A. Cane, , and S. E. Zebiak, 1996: An ocean dynamical thermostat. J. Climate, 9, 21902196.

  • Deser, C., , M. A. Alexander, , S. P. Xie, , and A. S. Phillips, 2010: Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci., 2, 115143.

    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., , A. C. Clement, , G. A. Vecchi, , B. J. Soden, , and B. P. Kirtman, 2009: Climate response of the equatorial Pacific to global warming. J. Climate, 22, 48734892.

    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., , A. C. Clement, , and G. A. Vecchi, 2010: Reconciling differing views of tropical Pacific climate change. Eos, Trans. Amer. Geophys. Union, 91, 141, doi:10.1029/2010EO160001.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., , T. G. Shepherd, , and W. D. Waugh, Eds., 2010: SPARC report on the evaluation of Chemistry-Climate Models. SPARC Rep. 5, WCRP-132, WMO/TD-1526, 434 pp.

  • Ghil, M., and Coauthors, 2002: Advanced spectral methods for climatic time series. Rev. Geophys., 40, 1003, doi:10.1029/2000RG000092.

  • Gray, L. J., and Coauthors, 2010: Solar influences on climate. Rev. Geophys., 48, RG4001, doi:10.1029/2009RG000282.

  • Guilyardi, E., , P. Delecluse, , S. Gualdi, , and A. Navarra, 2003: Mechanisms for ENSO phase change in a coupled GCM. J. Climate, 16, 11411158.

    • Search Google Scholar
    • Export Citation
  • Hasegawa, T., , and K. Hanawa, 2003: Decadal-scale variability of upper ocean heat content in the tropical Pacific. Geophys. Res. Lett., 30, 1272, doi:10.1029/2002GL016843.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699.

  • Jin, F. F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811829.

  • Jungclaus, J. H., and Coauthors, 2006: Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J. Climate, 19, 39523972.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., , and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606.

  • Knutson, T. R., , and S. Manabe, 1998: Model assessment of decadal variability and trends in the tropical Pacific Ocean. J. Climate, 11, 22732296.

    • Search Google Scholar
    • Export Citation
  • Kodera, K., , and Y. Kuroda, 2002: Dynamical response to the solar cycle. J. Geophys. Res., 107, 4749, doi:10.1029/2002JD002224.

  • Lean, J. L., , and D. H. Rind, 2008: How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophys. Res. Lett., 35, L18701, doi:10.1029/2008GL034864.

    • Search Google Scholar
    • Export Citation
  • Lee, J. N., , D. T. Shindell, , and S. Hameed, 2009: The influence of solar forcing on tropical circulation. J. Climate, 22, 58705885.

  • Lin, J.-L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J. Climate, 20, 44974525.

  • Manzini, E., , M. A. Giorgetta, , M. Esch, , L. Kornblueh, , and E. Roeckner, 2006: The influence of sea surface temperatures on the northern winter stratosphere: Ensemble simulations with the MAECHAM5 model. J. Climate, 19, 38633881.

    • Search Google Scholar
    • Export Citation
  • Marsland, S. J., , H. Haak, , J. H. Jungclaus, , M. Latif, , and F. Röske, 2003: The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modell., 5, 91127.

    • Search Google Scholar
    • Export Citation
  • Matthes, K., , U. Langematz, , L. L. Gray, , K. Kodera, , and K. Labitzke, 2004: Improved 11-year solar signal in the Freie Universität Berlin Climate Middle Atmosphere Model (FUB-CMAM). J. Geophys. Res., 109, D06101, doi:10.1029/2003JD004012.

    • Search Google Scholar
    • Export Citation
  • Matthes, K., , Y. Kuroda, , K. Kodera, , and U. Langematz, 2006: Transfer of the solar signal from the stratosphere to the troposphere: Northern winter. J. Geophys. Res., 111, D06108, doi:10.1029/2005JD006283.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., , and J. M. Arblaster, 2009: A lagged warm event–like response to peaks in solar forcing in the Pacific region. J. Climate, 22, 36473660.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., , W. M. Washington, , T. M. L. Wigley, , J. M. Arblaster, , and A. Dai, 2003: Solar and greenhouse gas forcing and climate response in the twentieth century. J. Climate, 16, 426444.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., , J. M. Arblaster, , G. Branstator, , and H. van Loon, 2008: A coupled air–sea response mechanism to solar forcing in the Pacific region. J. Climate, 21, 28832897.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., , J. M. Arblaster, , K. Matthes, , F. Sassi, , and H. van Loon, 2009: Amplifying the Pacific climate system response to a small 11-year solar cycle forcing. Science, 325, 11141118.

    • Search Google Scholar
    • Export Citation
  • Meinen, C. S., , and M. J. McPhaden, 2000: Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J. Climate, 13, 35513559.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., 1981: The response of equatorial oceans to a relaxation of the trade winds. J. Phys. Oceanogr., 11, 176189.

  • Plaut, G., , and R. Vautard, 1994: Spells of low-frequency oscillations and weather regimes in the Northern Hemisphere. J. Atmos. Sci., 51, 210236.

    • Search Google Scholar
    • Export Citation
  • Reichler, T., , and J. Kim, 2008: How well do coupled models simulate today’s climate? Bull. Amer. Meteor. Soc., 89, 303311.

  • Rind, D., , J. Lean, , J. Lerner, , P. Lonergan, , and A. Leboissitier, 2008: Exploring the stratospheric/tropospheric response to solar forcing. J. Geophys. Res., 113, D24103, doi:10.1029/2008JD010114.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 2006: Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J. Climate, 19, 37713791.

    • Search Google Scholar
    • Export Citation
  • Roy, I., , and J. D. Haigh, 2010: Solar cycle signals in sea level pressure and sea surface temperature. Atmos. Chem. Phys., 10, 31473153.

    • Search Google Scholar
    • Export Citation
  • Schmidt, H., , G. P. Brasseur, , and M. A. Giorgetta, 2010: Solar cycle signal in a general circulation and chemistry model with internally generated quasi-biennial oscillation. J. Geophys. Res., 115, D00I14, doi:10.1029/2009JD012542.

    • Search Google Scholar
    • Export Citation
  • Shindell, D. T., , G. Faluvegi, , R. L. Miller, , G. A. Schmidt, , J. E. Hansen, , and S. Sun, 2006: Solar and anthropogenic forcing of tropical hydrology. Geophys. Res. Lett., 33, L24706, doi:10.1029/2006GL027468.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., , R. W. Reynolds, , T. C. Peterson, , and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , J. J. Kennedy, , J. M. Wallace, , and P. D. Jones, 2008: A large discontinuity in the mid-twentieth century in observed global-mean surface temperature. Nature, 453, 646649.

    • Search Google Scholar
    • Export Citation
  • Tourre, Y. M., , C. Cibot, , L. Terray, , W. B. White, , and B. Dewitte, 2005: Quasi-decadal and inter-decadal climate fluctuations in the Pacific Ocean from a CGCM. Geophys. Res. Lett., 32, L07710, doi:10.1029/2004gl022087.

    • Search Google Scholar
    • Export Citation
  • Tung, K.-K., , and C. D. Camp, 2008: Solar cycle warming at the earth’s surface in NCEP and ERA-40 data: A linear discriminant analysis. J. Geophys. Res., 113, D05114, doi:10.1029/2007JD009164.

    • Search Google Scholar
    • Export Citation
  • Tung, K.-K., , and J. Zhou, 2010: The Pacific’s response to surface heating in 130 yr of SST: La Niña–like or El Niño–like? J. Atmos. Sci., 67, 26492657.

    • Search Google Scholar
    • Export Citation
  • Valcke, S., , D. Caubel, , D. Declat, , and L. Terray, Eds., 2003: OASIS3: Ocean atmosphere sea ice soil user’s guide. PRISM Project Rep. 2, CERFACS TR/CMGC/03/69, 57 pp.

  • van Loon, H., , and G. A. Meehl, 2011: The average influence of decadal solar forcing on the atmosphere in the South Pacific region. Geophys. Res. Lett., 38, L12804, doi:10.1029/2011GL047794.

    • Search Google Scholar
    • Export Citation
  • van Loon, H., , G. A. Meehl, , and J. M. Arblaster, 2004: A decadal solar effect in the tropics in July–August. J. Atmos. Sol. Terr. Phys., 66, 17671778.

    • Search Google Scholar
    • Export Citation
  • van Loon, H., , G. A. Meehl, , and D. J. Shea, 2007: Coupled air-sea response to solar forcing in the Pacific region during northern winter. J. Geophys. Res., 112, D02108, doi:10.1029/2006JD007378.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340.

  • White, W. B., , and Z. Liu, 2008a: Non-linear alignment of El Niño to the 11-yr solar cycle. Geophys. Res. Lett., 35, L19607, doi:10.1029/2008GL034831.

    • Search Google Scholar
    • Export Citation
  • White, W. B., , and Z. Liu, 2008b: Resonant excitation of the quasi-decadal oscillation by the 11-year signal in the sun’s irradiance. J. Geophys. Res., 113, C01002, doi:10.1029/2006JC004057.

    • Search Google Scholar
    • Export Citation
  • White, W. B., , J. Lean, , D. R. Cayan, , and M. D. Dettinger, 1997: Response of global upper ocean temperature to changing solar irradiance. J. Geophys. Res., 102 (C2), 32553266.

    • Search Google Scholar
    • Export Citation
  • White, W. B., , D. R. Cayan, , and J. Lean, 1998: Global upper ocean heat storage response to radiative forcing from changing solar irradiance and increasing greenhouse gas/aerosol concentrations. J. Geophys. Res., 103 (C10), 21 35521 366.

    • Search Google Scholar
    • Export Citation
  • White, W. B., , Y. M. Tourre, , M. Barlow, , and M. Dettinger, 2003: A delayed action oscillator shared by biennial, interannual, and decadal signals in the Pacific basin. J. Geophys. Res., 108, 3070, doi:10.1029/2002JC001490.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. International Geophysics Series, Vol. 91, Academic Press, 627 pp.

  • Zhou, J. S., , and K.-K. Tung, 2010: Solar cycles in 150 years of global sea surface temperature data. J. Climate, 23, 32343248.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 26 26 6
PDF Downloads 20 20 6

Mechanisms Involved in the Amplification of the 11-yr Solar Cycle Signal in the Tropical Pacific Ocean

View More View Less
  • 1 Max Planck Institute for Meteorology, and International Max Planck Research School on Earth System Modelling, Hamburg, Germany
  • | 2 Max Planck Institute for Meteorology, Hamburg, Germany
© Get Permissions
Restricted access

Abstract

It is debated whether the response of the tropical Pacific Ocean to the 11-yr solar cycle forcing resembles a La Niña– or El Niño–like signal. To address this issue, ensemble simulations employing an atmospheric general circulation model with and without ocean coupling are conducted. The coupled simulations show no evidence for a La Niña–like cooling in solar maxima. Instead, the tropical sea surface temperature rises almost in phase with the 11-yr solar cycle. A basinwide warming of about 0.1 K is simulated in the tropical Pacific, whereas the warming in the tropical Indian and Atlantic Oceans is weaker. In the western Pacific, the region of deep convection shifts to the east, thus reducing the surface easterlies. This shift is independent of the ocean coupling because deep convection moves to the east in the uncoupled simulations too. The reduced surface easterlies cool the subsurface but warm the surface due to the reduction of heat transport divergence. The latter mechanism operates together with water vapor feedback, resulting in a stronger tropical Pacific warming relative to the warming over the tropical Indian and Atlantic Oceans. These results suggest that the atmospheric response to the 11-yr solar cycle drives the tropical Pacific response, which is amplified by atmosphere–ocean feedbacks operating on decadal time scales. Based on the coupled simulations, it is concluded that the tropical Pacific Ocean should warm when the sun is more active.

Corresponding author address: Stergios Misios, Max Planck Institute for Meteorology, Bundesstrasse 53, 20146 Hamburg, Germany. E-mail: stergios.misios@zmaw.de

Abstract

It is debated whether the response of the tropical Pacific Ocean to the 11-yr solar cycle forcing resembles a La Niña– or El Niño–like signal. To address this issue, ensemble simulations employing an atmospheric general circulation model with and without ocean coupling are conducted. The coupled simulations show no evidence for a La Niña–like cooling in solar maxima. Instead, the tropical sea surface temperature rises almost in phase with the 11-yr solar cycle. A basinwide warming of about 0.1 K is simulated in the tropical Pacific, whereas the warming in the tropical Indian and Atlantic Oceans is weaker. In the western Pacific, the region of deep convection shifts to the east, thus reducing the surface easterlies. This shift is independent of the ocean coupling because deep convection moves to the east in the uncoupled simulations too. The reduced surface easterlies cool the subsurface but warm the surface due to the reduction of heat transport divergence. The latter mechanism operates together with water vapor feedback, resulting in a stronger tropical Pacific warming relative to the warming over the tropical Indian and Atlantic Oceans. These results suggest that the atmospheric response to the 11-yr solar cycle drives the tropical Pacific response, which is amplified by atmosphere–ocean feedbacks operating on decadal time scales. Based on the coupled simulations, it is concluded that the tropical Pacific Ocean should warm when the sun is more active.

Corresponding author address: Stergios Misios, Max Planck Institute for Meteorology, Bundesstrasse 53, 20146 Hamburg, Germany. E-mail: stergios.misios@zmaw.de
Save