• Antic, S., , R. Laprise, , B. Denis, , and R. de Elia, 2006: Testing the downscaling ability of a one-way nested regional climate model in regions of complex topography. Climate Dyn., 26, 305325.

    • Search Google Scholar
    • Export Citation
  • Argüeso, D., , J. M. Hidalgo-Muñoz, , S. R. Gámiz-Fortis, , M. J. Esteban-Parra, , J. Dudhia, , and Y. Castro-Díez, 2011: Evaluation of WRF parameterizations for climate studies over southern Spain using a multistep regionalization. J. Climate, 24, 56335651.

    • Search Google Scholar
    • Export Citation
  • Betts, A., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112, 677691.

    • Search Google Scholar
    • Export Citation
  • Betts, A., , and M. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and Arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112, 693709.

    • Search Google Scholar
    • Export Citation
  • Boberg, F., , P. Berg, , P. Thejll, , W. J. Gutowski, , and J. H. Christensen, 2010: Improved confidence in climate change projections of precipitation further evaluated using daily statistics from ENSEMBLES models. Climate Dyn., 35, 15091520.

    • Search Google Scholar
    • Export Citation
  • Bukovsky, M. S., , and D. J. Karoly, 2011: A regional modeling study of climate change impacts on warm-season precipitation in the central United States. J. Climate, 24, 19852002.

    • Search Google Scholar
    • Export Citation
  • Caldwell, P., , H.-N. S. Chin, , D. C. Bader, , and G. Bala, 2009: Evaluation of a WRF dynamical downscaling simulation over California. Climatic Change, 95, 499521.

    • Search Google Scholar
    • Export Citation
  • Chen, F., , and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and Coauthors, 2007: Regional climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 847–940.

  • Collins, W. D., and Coauthors, 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Tech. Note NCAR/TN-464+STR, 226 pp.

  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model version 3 (CCSM3). J. Climate, 19, 21222143.

  • DeMott, C. A., , D. A. Randall, , and M. Khairoutdinov, 2007: Convective precipitation variability as a tool for general circulation model analysis. J. Climate, 20, 91112.

    • Search Google Scholar
    • Export Citation
  • Esteban-Parra, M. J., , F. S. Rodrigo, , and Y. Castro-Díez, 1998: Spatial and temporal patterns of precipitation in Spain for the period 1880–1992. Int. J. Climatol., 18, 15571574.

    • Search Google Scholar
    • Export Citation
  • Evans, J., , and M. F. McCabe, 2010: Regional climate simulation over Australia’s Murray-Darling basin: A multitemporal assessment. J. Geophys. Res., 115, D14114, doi:10.1029/2010JD013816.

    • Search Google Scholar
    • Export Citation
  • Gao, X., , and F. Giorgi, 2008: Increased aridity in the Mediterranean region under greenhouse gas forcing estimated from high resolution simulations with a regional climate model. Global Planet. Change, 62, 195209.

    • Search Google Scholar
    • Export Citation
  • Gutowski, W., Jr., , S. Decker, , R. Donavon, , Z. Pan, , R. Arritt, , and E. Takle, 2003: Temporal–spatial scales of observed and simulated precipitation in central U.S. climate. J. Climate, 16, 38413847.

    • Search Google Scholar
    • Export Citation
  • Haylock, M. R., , N. Hofstra, , A. M. G. Klein Tank, , E. J. Klok, , P. D. Jones, , and M. New, 2008: A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res., 113, D20119, doi:10.1029/2008JD010201.

    • Search Google Scholar
    • Export Citation
  • Heikkilä, U., , A. Sandvik, , and A. Sorteberg, 2011: Dynamical downscaling of ERA-40 in complex terrain using the WRF regional climate model. Climate Dyn., 37, 15511564, doi:10.1007/s00382-010-0928-6.

    • Search Google Scholar
    • Export Citation
  • Herrera, S., , L. Fita, , J. Fernández, , and J. M. Gutiérrez, 2010: Evaluation of the mean and extreme precipitation regimes from the ENSEMBLES regional climate multimodel simulations over Spain. J. Geophys. Res., 115, D21117, doi:10.1029/2010JD013936.

    • Search Google Scholar
    • Export Citation
  • Herrera, S., , J. M. Gutiérrez, , R. Ancell, , M. R. Pons, , M. D. Frías, , and J. Fernández, 2012: Development and analysis of a 50-year high-resolution daily gridded precipitation dataset over Spain (Spain02). Int. J. Climatol., 32, 7485, doi:10.1002/joc.2256.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., , J. Dudhia, , and S. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120.

    • Search Google Scholar
    • Export Citation
  • Jacob, D., and Coauthors, 2007: An inter-comparison of regional climate models for Europe: Model performance in present-day climate. Climatic Change, 81 (Suppl.), 3152.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1990: The step-mountain coordinate: Physical package. Mon. Wea. Rev., 118, 14291443.

  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945.

    • Search Google Scholar
    • Export Citation
  • Kjellstrom, E., , F. Boberg, , M. Castro, , J. Christensen, , G. Nikulin, , and E. Sanchez, 2010: Daily and monthly temperature and precipitation statistics as performance indicators for regional climate models. Climate Res., 44, 135150.

    • Search Google Scholar
    • Export Citation
  • Laprise, R., 2008: Regional climate modelling. J. Comput. Phys., 227, 36413666.

  • Leung, L. R., , L. Mearns, , F. Giorgi, , and P. H. Wilby, 2003: Regional climate research: Needs and opportunities. Bull. Amer. Meteor. Soc., 84, 8995.

    • Search Google Scholar
    • Export Citation
  • Miguez-Macho, G., , G. Stenchikov, , and A. Robock, 2004: Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. J. Geophys. Res., 109, D13104, doi:10.1029/2003JD004495.

    • Search Google Scholar
    • Export Citation
  • Perkins, S. E., , A. J. Pitman, , N. J. Holbrook, , and J. McAneney, 2007: Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature, and precipitation over Australia using probability density functions. J. Climate, 20, 43564376.

    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., 2007: A combined local and nonlocal closure model for the atmospheric boundary layer. Part II: Application and evaluation in a mesoscale meteorological model. J. Appl. Meteor. Climatol., 46, 13961409.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM5. Part I: Model description. MPI Rep. 349, 127 pp.

  • Romero, R., , C. Ramis, , J. Guijarro, , and G. Sumner, 1999: Daily rainfall affinity areas in mediterranean Spain. Int. J. Climatol., 19, 557578.

    • Search Google Scholar
    • Export Citation
  • Rosenberg, E. A., , P. W. Keys, , D. B. Booth, , D. Hartley, , J. Burkey, , A. C. Steinemann, , and D. P. Lettenmaier, 2010: Precipitation extremes and the impacts of climate change on stormwater infrastructure in Washington State. Climatic Change, 102, 319349.

    • Search Google Scholar
    • Export Citation
  • Rummukainen, M., 2010: State-of-the-art with regional climate models. Wiley Interdiscip. Rev: Climate Change, 1, 8296.

  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 125 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.]

  • Solomon, S., and Coauthors, 2007: Technical summary. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 19–91.

  • Sotillo, M. G., , C. Ramis, , R. Romero, , S. Alonso, , and V. Homar, 2003: Role of orography in the spatial distribution of precipitation over the Spanish Mediterranean zone. Climate Res., 23, 247261.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., 2007: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge University Press, 459 pp.

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • von Storch, H., , H. Langenberg, , and F. Feser, 2000: A spectral nudging technique for dynamical downscaling purposes. Mon. Wea. Rev., 128, 36643673.

    • Search Google Scholar
    • Export Citation
  • Waldron, K., , J. Paegle, , and J. Horel, 1996: Sensitivity of a spectrally filtered and nudged limited-area model to outer model options. Mon. Wea. Rev., 124, 529547.

    • Search Google Scholar
    • Export Citation
  • Walsh, K., , and J. McGregor, 1997: An assessment of simulations of climate variability over Australia with a limited area model. Int. J. Climatol., 17, 201223.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 135 135 20
PDF Downloads 123 123 21

Evaluation of WRF Mean and Extreme Precipitation over Spain: Present Climate (1970–99)

View More View Less
  • 1 Applied Physics Department, Universidad de Granada, Granada, Spain, and Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia
  • | 2 Applied Physics Department, Universidad de Granada, Granada, Spain
© Get Permissions
Restricted access

Abstract

The ability of the Weather Research and Forecasting model (WRF) to simulate precipitation over Spain is evaluated from a climatological point of view. The complex topography and the large rainfall variability make the Iberian Peninsula a particularly interesting region and permit assessment of model performance under very demanding conditions.

Three high-resolution (10 km) simulations over the Iberian Peninsula have been completed spanning a 30-yr period (1970–99) and driven by different datasets: the 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40) as “perfect boundary conditions” and two general circulation models (GCMs), the Max Planck Institute ECHAM5 model (ECHAM5/MPI) and the NCAR Community Climate System Model, version 3 (CCSM3). The daily precipitation observational grid Spain02 is employed to evaluate the model at varying time scales. Not only are the long-term means (annual, seasonal, and monthly) examined but also the high-order statistics (extreme events).

The WRF provides valuable information on precipitation at high resolution and enhances local spatial distribution due to orographic features. Although substantial errors are still observed in terms of monthly precipitation, especially during the spring, the model is largely able to capture the various precipitation regimes. The major benefits of using WRF are related to the spatial distribution of rainfall and the simulation of extreme events, two facets of climate that can be barely explored with GCMs.

This study shows that WRF can be a useful tool for generating high-resolution climate information for Spanish precipitation at spatial and temporal scales that are crucial for both the environment and human life.

Corresponding author address: Daniel Argüeso, Departamento de Física Aplicada, Facultad de Ciencias, Campus de Fuentenueva s/n, 18071 Granada, Spain. E-mail: dab@ugr.es

Abstract

The ability of the Weather Research and Forecasting model (WRF) to simulate precipitation over Spain is evaluated from a climatological point of view. The complex topography and the large rainfall variability make the Iberian Peninsula a particularly interesting region and permit assessment of model performance under very demanding conditions.

Three high-resolution (10 km) simulations over the Iberian Peninsula have been completed spanning a 30-yr period (1970–99) and driven by different datasets: the 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40) as “perfect boundary conditions” and two general circulation models (GCMs), the Max Planck Institute ECHAM5 model (ECHAM5/MPI) and the NCAR Community Climate System Model, version 3 (CCSM3). The daily precipitation observational grid Spain02 is employed to evaluate the model at varying time scales. Not only are the long-term means (annual, seasonal, and monthly) examined but also the high-order statistics (extreme events).

The WRF provides valuable information on precipitation at high resolution and enhances local spatial distribution due to orographic features. Although substantial errors are still observed in terms of monthly precipitation, especially during the spring, the model is largely able to capture the various precipitation regimes. The major benefits of using WRF are related to the spatial distribution of rainfall and the simulation of extreme events, two facets of climate that can be barely explored with GCMs.

This study shows that WRF can be a useful tool for generating high-resolution climate information for Spanish precipitation at spatial and temporal scales that are crucial for both the environment and human life.

Corresponding author address: Daniel Argüeso, Departamento de Física Aplicada, Facultad de Ciencias, Campus de Fuentenueva s/n, 18071 Granada, Spain. E-mail: dab@ugr.es
Save