• Barlow, M., , M. Wheeler, , B. Lyon, , and H. Cullen, 2005: Modulation of daily precipitation over southwest Asia by the Madden–Julian oscillation. Mon. Wea. Rev., 133, 35793594.

    • Search Google Scholar
    • Export Citation
  • Becker, E. J., , E. H. Berbery, , and R. W. Higgins, 2011: Modulation of cold-season U.S. daily precipitation by the Madden–Julian oscillation. J. Climate, 24, 51575166.

    • Search Google Scholar
    • Export Citation
  • Bond, N. A., , and G. A. Vecchi, 2003: The influence of the Madden–Julian oscillation on precipitation in Oregon and Washington. Wea. Forecasting, 18, 600613.

    • Search Google Scholar
    • Export Citation
  • Carvalho, L. M. V., , C. Jones, , and M. A. F. S. Dias, 2002a: Intraseasonal large-scale circulations and mesoscale convective activity in tropical South America during the TRMM-LBA campaign. J. Geophys. Res., 107, 8042, doi:10.1029/2001JD000745.

    • Search Google Scholar
    • Export Citation
  • Carvalho, L. M. V., , C. Jones, , and B. Liebmann, 2002b: Extreme precipitation events in southeastern South America and large-scale convective patterns in the South Atlantic convergence zone. J. Climate, 15, 23772394.

    • Search Google Scholar
    • Export Citation
  • Carvalho, L. M. V., , C. Jones, , and B. Liebmann, 2004: The South Atlantic convergence zone: Intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J. Climate, 17, 88108.

    • Search Google Scholar
    • Export Citation
  • Cavazos, T., , and D. Rivas, 2004: Variability of extreme precipitation events in Tijuana, Mexico. Climate Res., 25, 229242.

  • Chen, M., , W. Shi, , P. Xie, , V. B. S. Silva, , V. E. Kousky, , R. W. Higgins, , and J. E. Janowiak, 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res., 113, D04110, doi:10.1029/2007JD009132.

    • Search Google Scholar
    • Export Citation
  • De Souza, E. B., , and T. Ambrizzi, 2006: Modulation of the intraseasonal rainfall over tropical Brazil by the Madden-Julian oscillation. Int. J. Climatol., 26, 17591776.

    • Search Google Scholar
    • Export Citation
  • Donald, A., , H. Meinke, , B. Power, , A.de H.N. Maia, , M. C. Wheeler, , N. White, , R. C. Stone, , and J. Ribbe, 2006: Near-global impact of the Madden-Julian oscillation on rainfall. Geophys. Res. Lett., 33, L09704, doi:10.1029/2005GL025155.

    • Search Google Scholar
    • Export Citation
  • Gonzalez, P. L. M., , C. S. Vera, , B. Liebmann, , and G. Kiladis, 2008: Intraseasonal variability in subtropical South America as depicted by precipitation data. Climate Dyn., 30, 727744.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., , and R. S. A. Mohan, 2001: Intraseasonal oscillations and interannual variability of the Indian summer monsoon. J. Climate, 14, 11801198.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., , and B. Liebmann, 1990: The intraseasonal (30–50 day) oscillation of the Australian summer monsoon. J. Atmos. Sci., 47, 29092923.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., , C. Zhang, , and J. D. Glick, 1999: Interannual variation of the Madden–Julian oscillation during austral summer. J. Climate, 12, 25382550.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., , M. C. Wheeler, , and C. Zhang, 2007: Seasonal dependence of the MJO–ENSO relationship. J. Climate, 20, 531543.

  • Hidayat, R., , and S. Kizu, 2010: Influence of the Madden–Julian oscillation on Indonesian rainfall variability in austral summer. Int. J. Climatol., 30, 18161825.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., , and W. Shi, 2001: Intercomparison of the principal modes of interannual and intraseasonal variability of the North American monsoon system. J. Climate, 14, 403417.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., , J.-K. E. Schemm, , W. Shi, , and A. Leetmaa, 2000a: Extreme precipitation events in the western United States related to tropical forcing. J. Climate, 13, 793820.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., , W. Shi, , E. Yarosh, , and R. Joyce, 2000b: Improved United States precipitation quality control system and analysis. NCEP/Climate Prediction Center Atlas 7, National Oceanic and Atmospheric Administration, 40 pp.

  • Isoguchi, O., , and H. Kawamura, 2006: MJO-related summer cooling and phytoplankton blooms in the South China Sea in recent years. Geophys. Res. Lett., 33, L16615, doi:10.1029/2006GL027046.

    • Search Google Scholar
    • Export Citation
  • Jeong, J.-H., , C.-H. Ho, , B.-M. Kim, , and W.-T. Kwon, 2005: Influence of the Madden-Julian oscillation on wintertime surface air temperature and cold surges in East Asia. J. Geophys. Res., 110, D11104, doi:10.1029/2004JD005408.

    • Search Google Scholar
    • Export Citation
  • Jeong, J.-H., , B.-M. Kim, , C.-H. Ho, , and Y.-H. Noh, 2008: Systematic variation in wintertime precipitation in East Asia by MJO-induced extratropical vertical motion. J. Climate, 21, 788801.

    • Search Google Scholar
    • Export Citation
  • Jones, C., 2000: Occurrence of extreme precipitation events in California and relationships with the Madden–Julian oscillation. J. Climate, 13, 35763587.

    • Search Google Scholar
    • Export Citation
  • Jones, C., 2009: A homogeneous stochastic model of the Madden–Julian oscillation. J. Climate, 22, 32703288.

  • Jones, C., , and L. M. V. Carvalho, 2002: Active and break phases in the South American monsoon system. J. Climate, 15, 905914.

  • Jones, C., , and L. M. V. Carvalho, 2006: Changes in the activity of the Madden–Julian oscillation during 1958–2004. J. Climate, 19, 63536370.

    • Search Google Scholar
    • Export Citation
  • Jones, C., , and L. M. V. Carvalho, 2011a: Stochastic simulations of the Madden–Julian oscillation activity. Climate Dyn., 36, 229246, doi:10.1007/s00382-009-0660-2.

    • Search Google Scholar
    • Export Citation
  • Jones, C., , and L. M. V. Carvalho, 2011b: Will global warming modify the activity of the Madden–Julian oscillation? Quart. J. Roy. Meteor. Soc., 137, 544552, doi:10.1002/qj.1765.

    • Search Google Scholar
    • Export Citation
  • Jones, C., , L. M. V. Carvalho, , R. W. Higgins, , D. E. Waliser, , and J.-K. E. Schemm, 2004a: Climatology of tropical intraseasonal convective anomalies: 1979–2002. J. Climate, 17, 523539.

    • Search Google Scholar
    • Export Citation
  • Jones, C., , D. E. Waliser, , K. M. Lau, , and W. Stern, 2004b: Global occurrences of extreme precipitation and the Madden–Julian oscillation: Observations and predictability. J. Climate, 17, 45754589.

    • Search Google Scholar
    • Export Citation
  • Jones, C., , L. M. V. Carvalho, , J. Gottschalck, , and W. R. Higgins, 2011a: The Madden–Julian oscillation and the relative value of deterministic forecasts of extreme precipitation in the contiguous United States. J. Climate, 24, 24212428.

    • Search Google Scholar
    • Export Citation
  • Jones, C., , J. Gottschalck, , L. M. V. Carvalho, , and W. R. Higgins, 2011b: Influence of the Madden–Julian oscillation on forecasts of extreme precipitation in the contiguous United States. Mon. Wea. Rev., 139, 332350.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kessler, W. S., 2001: EOF representations of the Madden–Julian oscillation and its connection with ENSO. J. Climate, 14, 30553061.

  • Kiladis, G. N., , K. H. Straub, , and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62, 27902809.

    • Search Google Scholar
    • Export Citation
  • Lau, W. K.-M., 2005: El Nino Southern Oscillation connection. Intraseasonal Variability in the Atmosphere-Ocean Climate System, W. K.-M. Lau and D. E. Waliser, Eds., Springer, 271–306.

  • Lau, W. K.-M., , and D. E. Waliser, Eds., 2005: Intraseasonal Variability in the Atmosphere-Ocean Climate System. Springer, 436 pp.

  • Liebmann, B., , and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., , G. N. Kiladis, , C. S. Vera, , A. C. Saulo, , and L. M. V. Carvalho, 2004: Subseasonal variations of rainfall in South America in the vicinity of the low-level jet east of the Andes and comparison to those in the South Atlantic convergence zone. J. Climate, 17, 38293842.

    • Search Google Scholar
    • Export Citation
  • Lin, H., , G. Brunet, , and R. Mo, 2010: Impact of the Madden–Julian oscillation on wintertime precipitation in Canada. Mon. Wea. Rev., 138, 38223839.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122, 814837.

  • Maloney, E. D., , and D. L. Hartmann, 2000: Modulation of eastern North Pacific hurricanes by the Madden–Julian oscillation. J. Climate, 13, 14511460.

    • Search Google Scholar
    • Export Citation
  • Martin, E. R., , and C. Schumacher, 2011: Modulation of Caribbean precipitation by the Madden–Julian oscillation. J. Climate, 24, 813824.

    • Search Google Scholar
    • Export Citation
  • Masutani, M., , and A. Leetmaa, 1999: Dynamical mechanisms of the 1995 California floods. J. Climate, 12, 32203236.

  • Matthews, A. J., 2000: Propagation mechanisms for the Madden-Julian oscillation. Quart. J. Roy. Meteor. Soc., 126, 26372651.

  • Matthews, A. J., 2008: Primary and successive events in the Madden–Julian oscillation. Quart. J. Roy. Meteor. Soc., 134, 439453, doi:10.1002/qj.224.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., , and G. N. Kiladis, 1999: The tropical–extratropical interaction between high-frequency transients and the Madden–Julian oscillation. Mon. Wea. Rev., 127, 661677.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., , and M. P. Meredith, 2004: Variability of Antarctic circumpolar transport and the southern annular mode associated with the Madden-Julian oscillation. Geophys. Res. Lett., 31, L24312, doi:10.1029/2004GL021666.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., , B. J. Hoskins, , and M. Masutani, 2004: The global response to tropical heating in the Madden-Julian oscillation during the northern winter. Quart. J. Roy. Meteor. Soc., 130, 19912011.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., , P. Singhruck, , and K. J. Heywood, 2007: Deep ocean impact of a Madden-Julian oscillation observed by Argo floats. Science, 318, 17651769.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 1999: Genesis and evolution of the 1997-98 El Nino. Science, 283, 950954.

  • McPhaden, M. J., 2004: Evolution of the 2002/03 El Niño. Bull. Amer. Meteor. Soc., 85, 677695.

  • Mo, K. C., 1999: Alternating wet and dry episodes over California and intraseasonal oscillations. Mon. Wea. Rev., 127, 27592776.

  • Mo, K. C., , and R. W. Higgins, 1998a: Tropical convection and precipitation regimes in the western United States. J. Climate, 11, 24042423.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., , and R. W. Higgins, 1998b: Tropical influences on California precipitation. J. Climate, 11, 412430.

  • Moon, J. Y., , B. Wang, , and K. J. Ha, 2011: ENSO regulation of MJO teleconnection. Climate Dyn., 37, 11331149.

  • Nogues-Paegle, J., , L. A. Byerle, , and K. C. Mo, 2000: Intraseasonal modulation of South American summer precipitation. Mon. Wea. Rev., 128, 837850.

    • Search Google Scholar
    • Export Citation
  • Pohl, B., , and P. Camberlin, 2006a: Influence of the Madden–Julian oscillation on East African rainfall. I: Intraseasonal variability and regional dependency. Quart. J. Roy. Meteor. Soc., 132, 25212539.

    • Search Google Scholar
    • Export Citation
  • Pohl, B., , and P. Camberlin, 2006b: Influence of the Madden–Julian oscillation on East African rainfall: II. March–May season extremes and interannual variability. Quart. J. Roy. Meteor. Soc., 132, 25412558.

    • Search Google Scholar
    • Export Citation
  • Pohl, B., , and A. J. Matthews, 2007: Observed changes in the lifetime and amplitude of the Madden–Julian oscillation associated with interannual ENSO sea surface temperature anomalies. J. Climate, 20, 26592674.

    • Search Google Scholar
    • Export Citation
  • Pohl, B., , Y. Richard, , and N. Fauchereau, 2007: Influence of the Madden–Julian oscillation on southern African summer rainfall. J. Climate, 20, 42274242.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., , P. J. Neiman, , G. N. Kiladis, , K. Weickmann, , and D. W. Reynolds, 2011: A multiscale observational case study of a Pacific atmospheric river exhibiting tropical–extratropical connections and a mesoscale frontal wave. Mon. Wea. Rev., 139, 11691189.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., , and M. S. Halpert, 1986: North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon. Wea. Rev., 114, 23522362.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., , D. P. Rowell, , K. R. Sperber, , and F. Nortley, 1999: On the predictability of the interannual behaviour of the Madden-Julian oscillation and its relationship with El Niño. Quart. J. Roy. Meteor. Soc., 125, 583609.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., , and E. D. Maloney, 2000: Effect of ENSO and the MJO on western North Pacific tropical cyclones. Geophys. Res. Lett., 27, 17391742.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., , R. Murtugudde, , P. Strutton, , and J.-L. Li, 2005: Subseasonal organization of ocean chlorophyll: Prospects for prediction based on the Madden-Julian oscillation. Geophys. Res. Lett., 32, L23602, doi:10.1029/2005GL024300.

    • Search Google Scholar
    • Export Citation
  • Weickmann, K. M., 1991: El Nino/Southern Oscillation and Madden-Julian (30-60 day) oscillations during 1981-1982. J. Geophys. Res., 96 (Suppl.), 31873195.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., , and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., , H. H. Hendon, , S. Cleland, , H. Meinke, , and A. Donald, 2009: Impacts of the Madden–Julian oscillation on Australian rainfall and circulation. J. Climate, 22, 14821498.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. International Geophysics Series, Vol. 91, Academic Press, 648 pp.

  • Zhang, C. D., 2005: Madden-Julian oscillation. Rev. Geophys., 43, 136.

  • Zhang, L., , B. Wang, , and Q. Zeng, 2009: Impact of the Madden–Julian oscillation on summer rainfall in southeast China. J. Climate, 22, 201216.

    • Search Google Scholar
    • Export Citation
  • Zhou, S., , M. L’Heureux, , S. Weaver, , and A. Kumar, 2012: A composite study of the MJO influence on the surface air temperature and precipitation over the continental United States. Climate Dyn., doi:10.1007/s00382-011-1001-9, in press.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 51 51 6
PDF Downloads 40 40 7

Spatial–Intensity Variations in Extreme Precipitation in the Contiguous United States and the Madden–Julian Oscillation

View More View Less
  • 1 Earth Research Institute, University of California, Santa Barbara, Santa Barbara, California
  • | 2 Earth Research Institute, and Department of Geography, University of California, Santa Barbara, Santa Barbara, California
© Get Permissions
Restricted access

Abstract

The spatial–intensity variability of extreme precipitation over the contiguous United States (CONUS) during boreal winter and relationships with the Madden–Julian oscillation (MJO) are investigated. Daily gridded precipitation is used to define two types of contiguous regions of extreme precipitation (CREPs): the intensity and spatial extent exceeding the 75th and 90th percentiles of frequency distributions. Extreme precipitation occurs twice as frequently when the MJO is active than inactive. Joint probabilities of the fractional area of CONUS sectors when the MJO is active are 2.0–2.5 higher than probabilities during inactive days for both 75th and 90th percentile CREPs (similar for the intensity of CREPs). Probabilities of the fractional area of 75th percentile CREPs when the MJO is active in neutral ENSO are higher than during warm or cold ENSO. Joint probabilities of the fractional area during MJO and warm ENSO are higher than MJO and cold ENSO and statistically significant over southern sectors. Results are similar for joint probabilities of intensity exceedance and MJO activity in warm and cold ENSO phases. Proportions of 75th and 90th percentile CREPs for each sector and phase of the MJO are predominantly large when MJO convective signals are over the central Indian Ocean or western Pacific. Probabilities of the fractional area of 90th percentile CREPs conditioned on MJO phases, however, do not show clear predominance. This indicates that the MJO is not the sole player in the occurrences of CREPs. Last, this study concludes that probabilities of the fractional area and intensity of 75th and 90th percentile CREPs in the CONUS do not depend on the amplitude of the MJO.

Corresponding author address: Dr. Charles Jones, Earth Research Institute, University of California, Santa Barbara, 6832 Ellison Hall, Santa Barbara, CA 93106-3060. E-mail: cjones@eri.ucsb.edu

Abstract

The spatial–intensity variability of extreme precipitation over the contiguous United States (CONUS) during boreal winter and relationships with the Madden–Julian oscillation (MJO) are investigated. Daily gridded precipitation is used to define two types of contiguous regions of extreme precipitation (CREPs): the intensity and spatial extent exceeding the 75th and 90th percentiles of frequency distributions. Extreme precipitation occurs twice as frequently when the MJO is active than inactive. Joint probabilities of the fractional area of CONUS sectors when the MJO is active are 2.0–2.5 higher than probabilities during inactive days for both 75th and 90th percentile CREPs (similar for the intensity of CREPs). Probabilities of the fractional area of 75th percentile CREPs when the MJO is active in neutral ENSO are higher than during warm or cold ENSO. Joint probabilities of the fractional area during MJO and warm ENSO are higher than MJO and cold ENSO and statistically significant over southern sectors. Results are similar for joint probabilities of intensity exceedance and MJO activity in warm and cold ENSO phases. Proportions of 75th and 90th percentile CREPs for each sector and phase of the MJO are predominantly large when MJO convective signals are over the central Indian Ocean or western Pacific. Probabilities of the fractional area of 90th percentile CREPs conditioned on MJO phases, however, do not show clear predominance. This indicates that the MJO is not the sole player in the occurrences of CREPs. Last, this study concludes that probabilities of the fractional area and intensity of 75th and 90th percentile CREPs in the CONUS do not depend on the amplitude of the MJO.

Corresponding author address: Dr. Charles Jones, Earth Research Institute, University of California, Santa Barbara, 6832 Ellison Hall, Santa Barbara, CA 93106-3060. E-mail: cjones@eri.ucsb.edu
Save