• Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , and S. Park, 2009: A new moist turbulence parameterization in the Community Atmosphere Model. J. Climate, 22, 34223448.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , J. R. McCaa, , and H. Grenier, 2004: A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part I: Description and 1D results. Mon. Wea. Rev., 132, 864882.

    • Search Google Scholar
    • Export Citation
  • Brier, G. W., , and J. Simpson, 1969: Tropical cloudiness and rainfall related to pressure and tidal variations. Quart. J. Roy. Meteor. Soc., 95, 120147.

    • Search Google Scholar
    • Export Citation
  • Bryan, G., , J. C. Wyngaard, , and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., , and R. A. Houze Jr., 1997: Diurnal variation and life-cycle of deep convective systems over the tropical Pacific warm pool. Quart. J. Roy. Meteor. Soc., 123, 357388.

    • Search Google Scholar
    • Export Citation
  • Chepfer, H., , S. Bony, , D. Winker, , G. Cesana, , J. L. Dufresne, , P. Minnis, , C. J. Stubenrauch, , and S. Zeng, 2010: The GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP). J. Geophys. Res., 115, D00H16, doi:10.1029/2009JD012251.

    • Search Google Scholar
    • Export Citation
  • Donner, L. J., , C. J. Seman, , and R. S. Hemer, 1999: Three-dimensional cloud-system modeling of GATE convection. J. Atmos. Sci., 56, 18851912.

    • Search Google Scholar
    • Export Citation
  • Donner, L. J., and Coauthors, 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J. Climate, 24, 34843519.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991.

  • Grabowski, W. W., , X. Wu, , M. W. Moncrieff, , and W. D. Hall, 1998: Cloud-resolving modeling of tropical cloud systems during phase III of GATE. Part II: Effects of resolution and the third spatial dimension. J. Atmos. Sci., 55, 32643282.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and Coauthors, 2006: Daytime convective development over land: A model intercomparison based on LBA observations. Quart. J. Roy. Meteor. Soc., 132, 317344.

    • Search Google Scholar
    • Export Citation
  • Hara, M., , T. Yoshikane, , H. G. Takahashi, , F. Kimura, , A. Noda, , and T. Tokioka, 2009: Assessment of the diurnal cycle of precipitation over the Maritime Continent simulated by a 20 km mesh GCM using TRMM PR data. J. Meteor. Soc. Japan, 87, 413424.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 1989: Observed structure of mesoscale convective systems and implementations for large-scale heating. Quart. J. Roy. Meteor. Soc., 115, 425461.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., , S. G. Geotis, , F. D. Marks Jr., , and A. K. West, 1981: Winter monsoon convection in the vicinity of north Borneo. Part I: Structure and time variation of the clouds and precipitation. Mon. Wea. Rev., 109, 15951614.

    • Search Google Scholar
    • Export Citation
  • Inoue, T., , M. Satoh, , H. Miura, , and B. Mapes, 2008: Characteristics of cloud size of deep convection simulated by a global cloud resolving model over the western tropical Pacific. J. Meteor. Soc. Japan, 86, 115.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., , and B. Wang, 2008: Diurnal precipitation regimes in the global tropics. J. Climate, 21, 26802696.

  • Lee, M.-I., , S. D. Schubert, , M. J. Suarez, , T. L. Bell, , and K.-M. Kim, 2007: Diurnal cycle of precipitation in the NASA Seasonal to Interannual Prediction Project atmospheric general circulation model. J. Geophys. Res., 112, D16111, doi:10.1029/2006JD008346.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., , and R. A. Houze Jr., 1993: Cloud clusters and superclusters over the oceanic warm pool. Mon. Wea. Rev., 121, 13981414.

  • McBride, J. L., , and W. M. Gray, 1980: Mass divergence in tropical weather systems. Part I: Diurnal variation. Quart. J. Roy. Meteor. Soc., 106, 501516.

    • Search Google Scholar
    • Export Citation
  • McGarry, M. M., , and R. J. Reed, 1978: Diurnal variations in convective activity and precipitation during phases II and III of GATE. Mon. Wea. Rev., 106, 101113.

    • Search Google Scholar
    • Export Citation
  • Miura, H., , M. Satoh, , T. Nasuno, , A. T. Noda, , and K. Oouchi, 2007: A Madden-Julian oscillation event realistically simulated by a global cloud-resolving model. Science, 318, 17631765, doi:10.1126/science.1148443.

    • Search Google Scholar
    • Export Citation
  • Miura, H., , M. Satoh, , and M. Katsumata, 2009: Spontaneous onset a Madden-Julian oscillation event in a cloud-system-resolving simulation. Geophys. Res. Lett., 36, L13802, doi:10.1029/2009GL039056.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., , and H. Niino, 2006: An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397407.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., , and H. Niino, 2009: Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Japan, 87, 895912.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., , and S. Sekine, 1994: Diurnal variation of convective activity over the tropical western Pacific. J. Meteor. Soc. Japan, 72, 627641.

    • Search Google Scholar
    • Export Citation
  • Noda, A. T., , and H. Niino, 2003: Critical grid size for simulating convective storms: A case study of the Del City supercell storm. Geophys. Res. Lett., 30, 1844, doi:10.1029/2003GL017498.

    • Search Google Scholar
    • Export Citation
  • Noda, A. T., , K. Oouchi, , M. Satoh, , H. Tomita, , S.-I. Iga, , and Y. Tsushima, 2010: Importance of the subgrid-scale turbulent moist process: Cloud distribution in global cloud-resolving simulations. Atmos. Res., 96, 208217.

    • Search Google Scholar
    • Export Citation
  • Oouchi, K., , A. T. Noda, , M. Satoh, , H. Miura, , H. Tomita, , T. Nasuno, , and S. Iga, 2009a: A simulated preconditioning of typhoon genesis controlled by a boreal summer Madden-Julian oscillation event in a global cloud-resolving model. SOLA, 5, 6568.

    • Search Google Scholar
    • Export Citation
  • Oouchi, K., , A. T. Noda, , M. Satoh, , B. Wang, , S.-P. Xie, , H. G. Takahashi, , and T. Yasunari, 2009b: Asian summer monsoon simulated by a global cloud-system-resolving model: Diurnal to intra-seasonal variability. Geophys. Res. Lett., 36, L11815, doi:10.1029/2009GL038271.

    • Search Google Scholar
    • Export Citation
  • Pauluis, O., , and S. Garner, 2006: Sensitivity of radiative–convective equilibrium simulations to horizontal resolution. J. Atmos. Sci., 63, 19101923.

    • Search Google Scholar
    • Export Citation
  • Petch, J. C., 2006: Sensitivity studies of developing convection in a cloud-resolving model. Quart. J. Roy. Meteor. Soc., 132, 345358.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., , Harshvardhan, , and D. A. Dazlich, 1991: Diurnal variability of the hydrological cycle in a general circulation model. J. Atmos. Sci., 48, 4062.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., , and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimal interpolation. J. Climate, 7, 929948.

    • Search Google Scholar
    • Export Citation
  • Riddaway, B., 2010: Horizontal resolution upgrade. ECMWF Newsletter, No. 123, ECMWF, Reading, United Kingdom, 6.

  • Sato, T., , H. Miura, , M. Satoh, , Y. N. Takayabu, , and Y. Wang, 2009: Diurnal cycle of precipitation in the tropics simulated in a global cloud-resolving model. J. Climate, 22, 48094826.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., , T. Matsuno, , H. Tomita, , H. Miura, , T. Nasuno, , and S. Iga, 2008: Nonhydrostatic Icosahedral Atmospheric Model (NICAM) for global cloud-resolving simulations. J. Comput. Phys., 227, 34863514.

    • Search Google Scholar
    • Export Citation
  • Sui, C.-H., , K.-M. Lau, , Y. N. Takayabu, , and D. A. Short, 1997: Diurnal variations in tropical oceanic cumulus convection during TOGA COARE. J. Atmos. Sci., 54, 639655.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., , and M. Kimoto, 2008: Diurnal march of rainfall simulated in a T106 AGCM and dependence on cumulus schemes. J. Meteor. Soc. Japan, 86, 163173.

    • Search Google Scholar
    • Export Citation
  • Tomita, H., , and M. Satoh, 2004: A new dynamical framework of nonhydrostatic global model using the icosahedral grid. Fluid Dyn. Res., 34, 357400.

    • Search Google Scholar
    • Export Citation
  • Tomita, H., , H. Miura, , S. Iga, , T. Nasuno, , and M. Satoh, 2005: A global cloud-resolving simulation: Preliminary results from an aqua planet experiment. Geophys. Res. Lett., 32, L08805, doi:10.1029/2005GL022459.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., , L. Zhou, , and K. Hamilton, 2007: Effect of convective entrainment/detrainment on the simulation of the tropical precipitation diurnal cycle. Mon. Wea. Rev., 135, 567585.

    • Search Google Scholar
    • Export Citation
  • Wu, X., , X.-Z. Liang, , and S. Park, 2007: Cloud-resolving model simulations over the ARM SGP. Mon. Wea. Rev., 135, 28412853.

  • Xu, K.-M., , and D. A. Randall, 1996: Explicit simulation of cumulus ensembles with the GATE phase III data: Comparison with observations. J. Atmos. Sci., 53, 37103736.

    • Search Google Scholar
    • Export Citation
  • Yamada, Y., , K. Oouchi, , M. Satoh, , H. Tomita, , and W. Yanase, 2010: Projection of changes in tropical cyclone activity and cloud height due to greenhouse warming: Global cloud-system-resolving approach. Geophys. Res. Lett., 37, L07709, doi:10.1029/2010/GL042518.

    • Search Google Scholar
    • Export Citation
  • Yanase, W., , M. Satoh, , H. Yamada, , K. Yasunaga, , and Q. Moteki, 2010: Continental influences of tropical waves on the genesis and rapid intensification of Typhoon Durian (2006). Geophys. Res. Lett., 37, L08809, doi:10.1029/2010/GL042516.

    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., , and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784801.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 25 25 4
PDF Downloads 19 19 6

Quantitative Assessment of Diurnal Variation of Tropical Convection Simulated by a Global Nonhydrostatic Model without Cumulus Parameterization

View More View Less
  • 1 Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, Kanagawa, Japan
  • | 2 Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, Kanagawa, and Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
  • | 3 Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, Kanagawa, and Advanced Institute for Computational Science, RIKEN, Hyogo, Japan
© Get Permissions
Restricted access

Abstract

This study investigated the resolution dependence of diurnal variation in tropical convective systems represented by a global nonhydrostatic model without cumulus parameterization. This paper describes the detailed characteristics of diurnal variation in surface precipitation based on three-dimensional data, with the aim of explicitly clarifying the mechanism that underlies the variation. The study particularly focused on the evolution in the size of the precipitation area for deep convective systems with an analysis of the vertical structure of thermodynamic fields. This analysis compares the results of simulations with horizontal grid sizes of 14 and 7 km (R14 and R7, respectively). Over land, the phase delay of diurnal variations in R7 is about 3 h less than that in R14. R7 produces a pronounced diurnal variation in the size distributions of precipitating area(s), especially for areas with a radius of 0–100 km; this characteristic is not found for R14. Such areas actively evolve between noon and evening, leading to the smooth development of larger-scale precipitating areas having a radius of 100–150 km. The maximum surface precipitation in R7 over land occurs at around 2000 local time throughout the tropics, approximately 2 h prior to the development of nighttime deep convection. Deep convective regimes are important as agents of vertical heat transport in the tropics. The present results suggest that precipitating areas with a radius <100 km make a strong contribution to the total amount of precipitation and to mass transport.

Corresponding author address: Akira T. Noda, Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showamachi, Kanazawa-ku, Yokohama City, Kanagawa 236-0001, Japan. E-mail: a_noda@jamstec.go.jp

Abstract

This study investigated the resolution dependence of diurnal variation in tropical convective systems represented by a global nonhydrostatic model without cumulus parameterization. This paper describes the detailed characteristics of diurnal variation in surface precipitation based on three-dimensional data, with the aim of explicitly clarifying the mechanism that underlies the variation. The study particularly focused on the evolution in the size of the precipitation area for deep convective systems with an analysis of the vertical structure of thermodynamic fields. This analysis compares the results of simulations with horizontal grid sizes of 14 and 7 km (R14 and R7, respectively). Over land, the phase delay of diurnal variations in R7 is about 3 h less than that in R14. R7 produces a pronounced diurnal variation in the size distributions of precipitating area(s), especially for areas with a radius of 0–100 km; this characteristic is not found for R14. Such areas actively evolve between noon and evening, leading to the smooth development of larger-scale precipitating areas having a radius of 100–150 km. The maximum surface precipitation in R7 over land occurs at around 2000 local time throughout the tropics, approximately 2 h prior to the development of nighttime deep convection. Deep convective regimes are important as agents of vertical heat transport in the tropics. The present results suggest that precipitating areas with a radius <100 km make a strong contribution to the total amount of precipitation and to mass transport.

Corresponding author address: Akira T. Noda, Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showamachi, Kanazawa-ku, Yokohama City, Kanagawa 236-0001, Japan. E-mail: a_noda@jamstec.go.jp
Save